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Abstract

Let Gn denote either the group SO(2n + 1, F ) or Sp(2n, F ) over
a non-archimedean local field of characteristic different than two. We
study parabolically induced representations of the form ⟨∆⟩oσ, where
⟨∆⟩ denotes the Zelevinsky segment representation of the general lin-
ear group attached to the segment ∆, and σ denotes a discrete series
representation of Gn. We determine composition factors of ⟨∆⟩oσ in
the case when ∆ = [νaρ, νbρ] where a is half-integral.

1 Introduction

Let F denote a non-archimedean local field of characteristic different than
two, and let Gn denote either symplectic or special odd orthogonal group
defined over F .

In this paper we continue our investigation, initiated in [12], on the struc-
ture of the induced representations of the form ⟨∆⟩ o σ, where ⟨∆⟩ stands
for a Zelevinsky segment representation of the general linear group attached
to the segment ∆ and σ stands for a discrete series representation of Gn.

We determine complete composition series of the induced representations
⟨∆⟩ o σ in the case when ∆ = [νaρ, νbρ] for half-integers a and b. We note
that representations of the form ⟨∆⟩ have been introduced in [25] and play a
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fundamental role in the classification of the unitary dual of the general linear
group, provided in [22]. Thus, it is of particular interest to study represen-
tations of Gn obtained by unitary parabolic induction from representations
having the Zelevinsky segment on the general linear group part and promi-
nent members of the unitary dual of Gn′ , n′ < n, such as discrete series or
tempered representations, on the classical group part. Knowledge on the
structure of the composition series of induced representations of such type
should have a deep impact on better understanding of the unitary dual of
classical p-adic groups.

It is rather well-known, and proved in detail in [12, Section 3], that for
∆ = [νaρ, νbρ] such that 2a ̸∈ Z the induced representation ⟨∆⟩ o σ is
irreducible. Also, by other irreducibility results obtained in [12], we may
restrict our attention to the case when ρ is a self-contragredient representa-
tion. Moreover, for a self-contragredient representation ρ and a half-integer
a we have two main cases to study. To describe them, let us denote by
(Jord(σ), σcusp, εσ) the admissible triple corresponding to σ by the classifica-
tion of discrete series ([14, 16]). The first main case is Jordρ(σ) ̸= ∅ and all
elements of Jordρ(σ) are even integers. The second main case is Jordρ(σ) = ∅
and ν

1
2ρoσcusp reduces. Although the composition series happen to be rather

similar in both cases, it turns out that a description of irreducible tempered
subquotients is much complicated in the first case.

To identify irreducible subquotients of studied induced representations,
we adopt the strategy used in [12], combined with further adjustment of the
methods used in [11] and [17] to the Zelevinsky segment case. The crucial
step in our description is the characterisation of irreducible tempered subquo-
tients of ⟨∆⟩oσ in the half-integral case, which is provided in detail in Section
3. The main tool used to accomplish this is the calculation of the Jacquet
modules using the structural formula, but one also has to use several key in-
gredients from classifications of discrete series and tempered representations,
such as the results on the Jacquet modules of tempered representations ([24,
Section 4]) and embeddings of strongly positive representations and discrete
series coming from slightly different approaches used in [8] and [9], which
both also hold in the classical group case. Along the way, we also obtain
a subrepresentation result for irreducible tempered subquotients of ⟨∆⟩o σ
(Theorem 5.2).

When having at hand a description of the irreducible tempered subquo-
tients, we are able to identify a general form of non-tempered irreducible
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subquotients. Following the subrepresentation version of the Langlands clas-
sification, we obtain very restrictive conditions which lead to rather short
composition series. A complete description of the composition series, to-
gether with the calculation of multiplicities, is then provided using a case-
by-case considerations. Our results show that in the half-integral case the
induced representation ⟨∆⟩ o σ is a multiplicity one representation, which
can be of length at most three. Also, using our description of the composition
series and irreducibility results from [12], one can directly obtain a class of
unitarizable representations appearing in the ends of complementary series.

Let us now describe the content of the paper in more detail. In the
following section we introduce the notation and present some preliminaries.
The third section presents the technical heart of the paper. It is devoted to
the determination of necessary and sufficient conditions under which ⟨∆⟩oσ
contains an irreducible tempered subquotient in the Jordρ(σ) ̸= ∅ case. Based
on the obtained conditions, in the fourth section we obtain a description of the
composition series in Jordρ(σ) ̸= ∅ case. In the fifth section we complete our

description by settling the remaining case when Jordρ(σ) = ∅ and ν
1
2ρoσcusp

reduces.
The author would like to thank Goran Muić for his suggestion to study

this subject.
This work has been supported in part by Croatian Science Foundation

under the project IP-2018-01-3628.

2 Preliminaries

Let F denote a non-archimedean local field of the characteristic different
from two. We first describe the groups that we consider.

Let Jn = (δi,n+1−j)1≤i,j≤n denote the n× n matrix, where δi,n+1−j stands
for the Kronecker symbol. For a square matrix g, we denote by gt its trans-
posed matrix, and by gτ its transposed matrix with respect to the second
diagonal. In what follows, we shall fix one of the series of classical groups

Sp(n, F ) =

{
g ∈ GL(2n, F ) :

(
0 −Jn
Jn 0

)
gt
(

0 −Jn
Jn 0

)
= g−1

}
,

or

SO(2n+ 1, F ) =

{
g ∈ GL(2n+ 1, F ) : gτ = g−1

}
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and denote by Gn the rank n group belonging to the series which we fixed.
Also, let GL(m,F ) denote the general linear group of rank m over F .

The set of standard parabolic subgroups will be fixed in a usual way, i.e.,
we fix a minimal F -parabolic subgroup in the classical group Gn consisting
of upper-triangular matrices in the usual matrix realization of the classical
group. Then the Levi factors of standard parabolic subgroups have the form
M = GL(n1, F )×· · ·×GL(nk, F )×Gn′ . If δi is a representation of GL(ni, F )
and τ a representation of Gn′ , the normalized parabolically induced repre-
sentation IndGn

M (δ1 ⊗ · · · ⊗ δk ⊗ τ) will be denoted by δ1 × · · · × δk o τ . We
use a similar notation to denote a parabolically induced representation of
GL(m,F ).

By Irr(Gn) we denote the set of all irreducible admissible representations
of Gn. Let R(Gn) denote the Grothendieck group of admissible representa-
tions of finite length of Gn and define R(G) = ⊕n≥0R(Gn). In a similar way
we define Irr(GL(n, F )) and R(GL) = ⊕n≥0R(GL(n, F )). We note that in
R(G) we have π o σ = π̃ o σ and π1 × π2 o σ = π2 × π1 o σ.

For σ ∈ Irr(Gn) and 1 ≤ k ≤ n we denote by r(k)(σ) the normalized
Jacquet module of σ with respect to the maximal parabolic subgroup P(k)

having the Levi subgroup equal to GL(k, F )×Gn−k. We identify r(k)(σ) with
its semisimplification in R(GL(k, F ))⊗R(Gn−k) and consider

µ∗(σ) = 1⊗ σ +
n∑

k=1

r(k)(σ) ∈ R(GL)⊗R(G).

Let ν stand for a composition of the determinant mapping with the nor-
malized absolute value on F . Let ρ ∈ R(GL) denote an irreducible cuspidal
unitarizable representation. By a segment ∆ we mean a set of the form
[ρ, νmρ] := {ρ, νρ, . . . , νmρ}, where m stands for a non-negative integer. The
induced representation ρ× νρ× · · ·× νmρ has a unique irreducible subrepre-
sentation ([25]), which is denoted by ⟨∆⟩ and called the Zelevinsky segment
representation.

The induced representation νmρ× νm−1ρ× · · · × ρ also contains a unique
irreducible subrepresentation, denoted by δ(∆). Representation δ(∆) is es-
sentially square-integrable, and, by [25], every irreducible essentially square-
integrable representation in R(GL) can be obtained in this way.

Since in R(G) we have ⟨[νaρ, νbρ]⟩oσ = ⟨[ν−bρ̃, ν−aρ̃]⟩oσ, we may assume
a+ b ≥ 0.
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We frequently use the following structural formulas, obtained in [5, The-
orem 1.4] and in [23]:

Theorem 2.1. Let ρ ∈ Irr(GL(m,F )) be a cuspidal representation and k, l ∈
R such that k + l ∈ Z≥0. Let σ denote an admissible representation of finite
length of Gn. Write µ∗(σ) =

∑
π,σ′ π ⊗ σ′. Then we have:

µ∗(⟨[ν−kρ, ν lρ]⟩o σ) =
k+l+1∑
i=0

i∑
j=0

∑
π,σ′

⟨[ν−lρ̃, ν−i+kρ̃]⟩ × ⟨[ν−kρ, νj−k−1ρ]⟩ × π

⊗ ⟨[νj−kρ, νi−k−1ρ]⟩o σ′,

µ∗(δ([ν−kρ, ν lρ])o σ) =
l∑

i=−k−1

l∑
j=i

∑
π,σ′

δ([ν−iρ̃, νkρ̃])× δ([νj+1ρ, ν lρ])× π

⊗ δ([νi+1ρ, νjρ])o σ′.

Let us take a moment to recall the subrepresentation version of the Lang-
lands classification for general linear groups.

For every irreducible essentially square-integrable representation δ ∈ R(GL),
there is a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. We note that
e(δ([νaρ, νbρ])) = (a+ b)/2. Suppose that δ1, δ2, . . . , δk are irreducible essen-
tially square-integrable representations such that e(δ1) ≤ e(δ2) ≤ . . . ≤ e(δk).
Then the induced representation δ1 × δ2 × · · · × δk has a unique irreducible
(Langlands) subrepresentation, denoted by L(δ1, δ2, . . . , δk), which appears
with multiplicity one in the composition series of δ1 × δ2 × · · · × δk. Every
irreducible representation π ∈ R(GL) is isomorphic to some L(δ1, δ2, . . . , δk)
and, for a given π, the representations δ1, δ2, . . . , δk are unique up to a per-
mutation.

We also use the subrepresentation version of the Langlands classification
for classical groups, since it happens to be more appropriate for our Jacquet
module considerations. We realize a non-tempered irreducible representa-
tion π of Gn as the unique irreducible (Langlands) subrepresentation of an
induced representation of the form δ1 × δ2 × · · · × δk o τ , where τ is an
irreducible tempered representation of some Gt, and δ1, δ2, . . . , δk ∈ R(GL)
are irreducible essentially square-integrable representations such that e(δ1) ≤
e(δ2) ≤ · · · ≤ e(δk) < 0. In this case, we write π = L(δ1, δ2, . . . , δk, τ).

We will use the following result ([6, Lemma 5.5]) several times.
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Lemma 2.2. Suppose that π ∈ R(Gn) is an irreducible representation, λ an
irreducible representation of the Levi subgroup M of Gn, and π a subrepre-
sentation of IndGn

M (λ). If L > M , then there is an irreducible subquotient ρ
of IndLM(λ) such that π is a subrepresentation of IndGn

L (ρ).

Now we recall the Mœglin-Tadić classification of discrete series. We note
that this classification now holds unconditionally, due to [1], [15, Théorème 3.1.1]
and [3, Theorem 7.8]. Every discrete series representation in Gn is uniquely
described by the following three invariants: the partial cuspidal support, the
Jordan block and the ε-function.

The partial cuspidal support of a discrete series representation σ of Gn

is an irreducible cuspidal representation σcusp of some Gm such that σ is a
subrepresentation of πo σcusp for some irreducible admissible representation
π ∈ R(GL).

The Jordan block of σ, which we denote by Jord(σ), is a set of all
pairs (x, ρ) where ρ ∈ R(GL) is an irreducible cuspidal unitarizable self-
contragredient representation and x is a positive integer such that the fol-
lowing two conditions are satisfied:

(i) x is even if and only if L(s, ρ, r) has a pole at s = 0. The local L-
function L(s, ρ, r) is the one defined by Shahidi ([20], [21]), where r is
the exterior square representation of the standard representation on Cnρ

of GL(nρ,C) if Gn is a symplectic group and r is the symmetric-square
representation of the standard representation on Cnρ of GL(nρ,C) if Gn

is an odd-orthogonal group.

(ii) The induced representation δ([ν−(x−1)/2ρ, ν(x−1)/2ρ])o σ is irreducible.

The Jordan triples are triples of the form (Jord, σ′, ε) where

(1) σ′ is an irreducible cuspidal representation of some Gn.

(2) Jord is a finite set (possibly empty) of pairs (x, ρ), where ρ ∈ R(GL)
is an irreducible self-contragredient cuspidal representation and x is a
positive integer which is even if and only if the local L-function L(s, ρ, r)
has a pole at s = 0. For such an irreducible representation ρ we define
Jordρ = {x : (x, ρ) ∈ Jord}. If Jordρ ̸= ∅ and x ∈ Jordρ, let us write
x = max{y ∈ Jordρ : y < x}, if it exists.
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(3) ε is a function defined on a subset of Jord∪(Jord× Jord) and attains the
values 1 and -1. If (x, ρ) ∈ Jord, then ε(x, ρ) is not defined if and only
if x is odd and (y, ρ) ∈ Jord(σ′) for some positive integer y. Next, ε is
defined on a pair (x, ρ), (y, ρ′) ∈ Jord if and only if ρ ∼= ρ′ and x ̸= y.

It follows from the compatibility conditions, which can be found in [8] and
[16], that it is enough to know the value of the ε-function on the consecutive
pairs (x , ρ), (x, ρ) and on the minimal element of Jordρ (if it is defined on
elements, not only on pairs).

Suppose that, for the Jordan triple (Jord, σ′, ε), there is (x, ρ) ∈ Jord
such that ε((x , ρ), (x, ρ)) = 1. If we put Jord′ = Jord \{(x , ρ), (x, ρ)} and
consider the restriction ε′ of ε to Jord′ ∪(Jord′ × Jord′), we obtain a new
Jordan triple (Jord′, σ′, ε′), and we say that such Jordan triple is subordinated
to (Jord, σ′, ε).

We say that the Jordan triple (Jord, σ′, ε) is a triple of alternated type if
ε((x , ρ), (x, ρ)) = −1 holds whenever x is defined and there is an increasing
bijection φρ : Jordρ → Jord′

ρ(σ
′), where Jord′

ρ(σ
′) equals Jordρ(σ

′) ∪ {0} if a
is even and ε(min(Jordρ), ρ) = 1 and Jord′

ρ(σ
′) equals Jordρ(σ

′) otherwise.
We say that the Jordan triple (Jord, σ′, ε) dominates the Jordan triple

(Jord′, σ′, ε′) if there is a sequence of Jordan triples (Jordi, σ
′, εi), 0 ≤ i ≤ k,

such that (Jord0, σ
′, ε0) = (Jord, σ′, ε), (Jordk, σ

′, εk) = (Jord′, σ′, ε′) and
(Jordi, σ

′, εi) is subordinated to (Jordi−1, σ
′, εi−1) for i ∈ {1, 2, . . . , k}. The

Jordan triple (Jord, σ′, ε) is called an admissible triple if it dominates a triple
of alternated type.

By [14] and [16], or also [8], there is a one-to-one correspondence between
the set of all discrete series in R(G) and the set of all admissible triples
(Jord, σ′, ε) given by σ = σ(Jord,σ′,ϵ), such that σcusp = σ′ and Jord(σ) = Jord.

Throughout the paper, the admissible triple corresponding to a discrete
series σ ∈ R(G) will be denoted by (Jord(σ), σcusp, εσ).

Triples of the alternated type correspond to so-called strongly positive
representations. We say that σ ∈ R(G) is strongly positive if for every em-
bedding σ ↪→ νa1ρ1×· · ·×νakρkoσcusp, where ρ1, . . . , ρk, σcusp are irreducible
cuspidal unitary representations, we have ai > 0 for all i.

Let ρ ∈ R(GL) denote an irreducible cuspidal unitarizable representation,
and let σ ∈ R(G) stand for a discrete series. It is proved in [12, Proposi-
tion 3.3] that ⟨[νxρ, νyρ]⟩o σ is irreducible if 2x ̸∈ Z.

Let a, b denote half-integers such that b − a ≥ 0. By the irreducibility
criterion provided in [12, Section 3], the induced representation ⟨[νaρ, νbρ]⟩o

7



σ is irreducible unless ρ is self-contragredient and one of the following holds:

(1) Jordρ(σ) ̸= ∅ and Jordρ(σ) consists of even integers,

(2) Jordρ(σ) = ∅ and ν
1
2ρo σcusp reduces.

3 Tempered subquotients in Jordρ(σ) ̸= ∅ case

Throughout this section we assume that ∆ = [νaρ, νbρ], where ρ ∈ R(GL)
is an irreducible self-contragredient cuspidal unitary representation, a and b
are half-integers such that a + b ≥ 0, and σ ∈ R(G) is a discrete series such
that Jordρ(σ) ̸= ∅ and all elements of Jordρ(σ) are even.

In this section we provide necessary and sufficient conditions under which
the induced representation ⟨∆⟩oσ contains an irreducible tempered subquo-
tient.

Lemma 3.1. Let c, d denote half-integers such that 3
2
≤ c ≤ d.

(1) If 2c−1 ̸∈ Jordρ(σ) and x ∈ Jordρ(σ) for all x ∈ {2c+1, 2c+3, . . . , 2d+
1}, then the Jacquet module of σ with respect to the appropriate parabolic
subgroup contains an irreducible representation of the form νcρ⊗νc+1ρ⊗
νc+2ρ⊗ · · · ⊗ νdρ⊗ π.

(2) If x ∈ Jordρ(σ) for all x ∈ {2c + 1, 2c + 3, . . . , 2d + 1}, (2c + 1) is
defined and εσ(((2c+1) , ρ), (2c+1, ρ)) = 1, then the Jacquet module of σ
with respect to the appropriate parabolic subgroup contains an irreducible
representation of the form νcρ⊗ νc+1ρ⊗ νc+2ρ⊗ · · · ⊗ νdρ⊗ π.

(3) If c < d, the Jacquet module of σ with respect to the appropriate parabolic
subgroup does not contain an irreducible representation of the form νcρ⊗
νc+1ρ ⊗ · · · ⊗ νd−1ρ ⊗ νdρ × νdρ ⊗ π. Also, µ∗(σ) does not contain an
irreducible representation of the form νdρ× νdρ⊗ π.

Lemma 3.2. Let c denote a non-negative half-integer such that 2c + 1 ̸∈
Jordρ(σ). Then, for a non-negative integer k, the Jacquet module of σ with
respect to the appropriate parabolic subgroup does not contain an irreducible
representation of the form νc−kρ⊗ νc−k+1ρ⊗ · · · ⊗ νcρ⊗ π.
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Proposition 3.3. Suppose that a > 1
2
. If ⟨∆⟩ o σ contains a discrete se-

ries subquotient then x ∈ Jordρ(σ) for all x ∈ {2a − 1, 2a + 1, . . . , 2b − 1},
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a + 1, 2a + 3, . . . , 2b − 1} and 2b + 1 ̸∈
Jordρ(σ). Furthermore, if ⟨∆⟩oσ contains a discrete series subquotient then
it contains a unique discrete series subquotient, which is a subrepresentation.

Proof. Suppose that ⟨∆⟩ o σ contains a discrete series subquotient, and let
us denote such a subquotient by σds. Using cuspidal support considerations,
in a similar way as in [4, Subsection 4.2.1, page 216] we deduce that 2a−1 ∈
Jordρ(σ) and 2b + 1 ̸∈ Jordρ(σ). Note that Jord(σds) = Jord(σ) ∪ {(2b +
1, ρ)} \ {(2a− 1, ρ)}. In the rest of the proof we may assume that a < b.

Suppose that {2a+1, 2a+3, . . . , 2b−1} is not a subset of Jordρ(σ), and let
us denote by xmax the largest element of {2a+1, 2a+3, . . . , 2b−1} which does
not appear in Jordρ(σ). First part of Lemma 3.1 implies that the Jacquet
module of σds with respect to the appropriate parabolic subgroup contains an
irreducible representation of the form ν

xmax+1
2 ρ⊗ν

xmax+3
2 ρ⊗· · ·⊗νbρ⊗π. Using

the structural formula and Lemma 3.2, we deduce that the Jacquet module of
⟨∆⟩oσ with respect to the appropriate parabolic subgroup does not contain

an irreducible representation of the form ν
xmax+1

2 ρ⊗ ν
xmax+3

2 ρ⊗· · ·⊗ νbρ⊗π,
a contradiction.

In the same way, using the second part of Lemma 3.1, we also conclude
that εσds

((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+1, 2a+3, . . . , 2b+1}. Applying
[24, Lemma 8.1] several times, we obtain an embedding

σds ↪→ νaρ× νa+1ρ× · · · × νbρo σ′,

where σ′ is a discrete series such that x ∈ Jordρ(σ
′) for all x ∈ {2a− 1, 2a+

1, . . . , 2b− 1}, εσ′((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+ 1, 2a+ 3, . . . , 2b− 1}
and 2b+ 1 ̸∈ Jordρ(σ

′). From Lemma 2.2 follows that there is an irreducible
subquotient π of νaρ × νa+1ρ × · · · × νbρ such that σds ↪→ π o σ′. Since
εσds

((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+ 1, 2a+ 3, . . . , 2b+ 1}, it follows at
once that π ∼= ⟨∆⟩.

Frobenius reciprocity implies that νaρ⊗νa+1ρ⊗· · ·⊗νbρ⊗σ′ is contained
in the Jacquet module of σds with respect to the appropriate parabolic sub-
group. Since 2b+1 ̸∈ Jordρ(σ), using Lemma 3.2 and Theorem 2.1 we obtain
that the only irreducible representation of the form νaρ⊗νa+1ρ⊗· · ·⊗νbρ⊗σ′

appearing in the Jacquet module of ⟨∆⟩ o σ with respect to the appropri-
ate parabolic subgroup is νaρ ⊗ νa+1ρ ⊗ · · · ⊗ νbρ ⊗ σ, which appears there
with multiplicity one. Consequently, σ′ ∼= σ, so εσ((x , ρ), (x, ρ)) = −1 for all
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x ∈ {2a+1, 2a+3, . . . , 2b−1}. Also, σds is a subrepresentation of ⟨∆⟩oσ, and
the previous multiplicity one result implies that ⟨∆⟩ o σ contains a unique
discrete series subquotient.

From Proposition 3.3 and [12, Lemma 4.4] we obtain the following crite-
rion.

Theorem 3.4. Suppose that a > 1
2
. Then ⟨∆⟩o σ contains a discrete series

subquotient if and only if x ∈ Jordρ(σ) for all x ∈ {2a−1, 2a+1, . . . , 2b−1},
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a + 1, 2a + 3, . . . , 2b − 1} and 2b + 1 ̸∈
Jordρ(σ). Furthermore, if ⟨∆⟩oσ contains a discrete series subquotient then
it contains a unique discrete series subquotient, which is a subrepresentation.

Lemma 3.5. Suppose that σds ∈ R(G) is a discrete series such that ⟨[ν 1
2ρ, νcρ]⟩o

σds contains a strongly positive discrete series σsp for some c ≥ 1
2
. Then there

is an irreducible representation π ∈ R(G) such that σsp is a subrepresentation

of ν
1
2ρo π.

Proof. Since σsp is strongly positive, from the cuspidal support follows that
σds also has to be strongly positive. In the same way as in the proof of
Proposition 3.3 we deduce that x ∈ Jordρ(σds) for all x ∈ {2, 4, . . . , 2c − 1}
and 2c+ 1 ̸∈ Jordρ(σds).

By the classification of strongly positive discrete series, given in [9], there
is an ordered k-tuple (σ1, σ2, . . . , σk) of strongly positive discrete series repre-
sentations such that σ1

∼= σds, there are no twists of ρ in the cuspidal support
of σk, and for i = 1, 2, . . . , k−1 there are half-integers ai, bi,

1
2
≤ ai ≤ bi, such

that σi is a unique irreducible subrepresentation of δ([νaiρ, νbiρ])oσi+1. Also,
for i = 1, 2, . . . , k − 2 we have ai+1 = ai + 1, bi+1 ≥ bi + 1 and νak−1ρo σcusp

reduces, where σcusp stands for the partial cuspidal support of σsp.
Using [16, Proposition 2.1], we deduce that either k = 1 and νcρo σcusp

reduces, or k ≥ 2 and a1 = c + 1. Since a strongly positive discrete series
is completely determined by its cuspidal support, it now follows directly
from the classification of strongly positive discrete series that σsp is a unique

irreducible subrepresentation of ν
1
2ρ × ν

3
2ρ × · · · × νcρ o σds. Now Lemma

2.2 finishes the proof.

To deal with the next case, we need the following preparing result.

Lemma 3.6. Suppose that σds ∈ R(G) is a discrete series representation
and let ρ ∈ R(GL) denote an irreducible self-contragredient representation.
Suppose that for x ∈ Jordρ(σds) we have x ∈ 2Z. Then the following holds:
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(1) Let c = min(Jordρ(σds)) and suppose that εσds
(c, ρ) = 1. Then there is a

discrete series σ1 such that σds is a subrepresentation of δ([ν
1
2ρ, ν

c−1
2 ρ])o

σ1.

(2) Let c denote a positive half-integer such that 2c + 1 < min(Jordρ(σds)).
Then in R(G) we have

δ([ν
1
2ρ, νcρ])o σds = L(δ([ν−cρ, ν− 1

2ρ]), σds) + σ2,

where σ2 is a discrete series subrepresentation of δ([ν
1
2ρ, νcρ])o σds.

Proof. For the first part of the lemma, it follows from the definition of the ε-
function that there is an irreducible representation π1 ∈ R(G) such that σds is

a subrepresentation of δ([ν
1
2ρ, ν

c−1
2 ρ])o π1. Suppose that π1 is not a square-

integrable representation. Let us first assume that π1 is tempered. Then
there is an x ≥ 0, an irreducible representation ρ′ ∈ R(GL) and an irreducible
tempered representation τ ∈ R(G) such that π1 is a subrepresentation of
δ([ν−xρ′, νxρ′])o τ . If ρ′ ̸∼= ρ or ρ′ ∼= ρ and x ≥ c−1

2
, we have

σds ↪→ δ([ν
1
2ρ, ν

c−1
2 ρ])×δ([ν−xρ′, νxρ′])oτ ∼= δ([ν−xρ′, νxρ′])×δ([ν

1
2ρ, ν

c−1
2 ρ])oτ,

contradicting the square-integrability criterion. If ρ′ ∼= ρ and x < c−1
2
, we

have an embedding

σds ↪→ νxρ× δ([ν
1
2ρ, ν

c−1
2 ρ])× δ([ν−xρ, νx−1ρ])o τ,

which contradicts the minimality of c by [16, Lemma 3.6].
Let us now assume that π1 is non-tempered. Then there are x, y such that

x+y < 0, an irreducible representation ρ′ ∈ R(GL) and an irreducible repre-
sentation π2 ∈ R(G) such that π1 is a subrepresentation of δ([νxρ′, νyρ′])oπ2.
In the same way as before, we conclude that ρ′ ∼= ρ, y = −1

2
, and that σds

has to be contained in the kernel of the intertwining operator

δ([ν
1
2ρ, ν

c−1
2 ρ])× δ([νxρ, ν− 1

2ρ])o π2 → δ([νxρ, ν− 1
2ρ])× δ([ν

1
2ρ, ν

c−1
2 ρ])o π2.

Thus, σds is a subrepresentation of δ([νxρ, ν
c−1
2 ρ])o π2, for x < 0. Using [14,

Remarque 3.2] we conclude that there are x′, 0 < x′ < c−1
2
, and a discrete

series σ′
ds ∈ R(G) such that σds is a subrepresentation of δ([ν−x′

ρ, ν
c−1
2 ρ])o

σ′
ds. From [16, Proposition 2.1] now follows that 2x′ + 1 ∈ Jordρ(σds). Since
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2x′ + 1 < c, this contradicts the minimality of c. Consequently, π1 has to be
square-integrable and the first part of the lemma is proved.

Let us now prove the second part of the lemma. Discrete series σ2

is constructed in [19, Section 6]. From [19, Lemma 2.2] we deduce that

δ([ν
1
2ρ, νcρ]) o σds contains a unique irreducible non-tempered subquotient,

L(δ([ν−cρ, ν− 1
2ρ]), σds). Now, following the same arguments as in the proof

of [17, Theorem 2.1] we obtain that every irreducible tempered subquotient

of δ([ν
1
2ρ, νcρ])o σds is a subrepresentation. But, it is easy to see, using the

structural formula and 2c + 1 < min(Jordρ(σds)), that δ([ν
1
2ρ, νcρ]) ⊗ σds is

contained in µ∗(δ([ν
1
2ρ, νcρ])oσds) with multiplicity one. Thus, δ([ν

1
2ρ, νcρ])o

σds contains a unique irreducible subrepresentation and the lemma is proved.

Proposition 3.7. Suppose that a = 1
2
. If ⟨∆⟩o σ contains a discrete series

subquotient then x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b−1}, εσ((x , ρ), (x, ρ)) =
−1 for all x ∈ {4, 6, . . . , 2b − 1}, 2b + 1 ̸∈ Jordρ(σ), and if b > 1

2
then

εσ(2, ρ) = −1. Furthermore, if ⟨∆⟩oσ contains a discrete series subquotient
then it contains a unique discrete series subquotient, which is a subrepresen-
tation.

Proof. Let us denote a discrete series subquotient of ⟨∆⟩o σ by σds. In the
same way as in the proof of Proposition 3.3 we deduce that x ∈ Jordρ(σ) for
all x ∈ {2, 4, . . . , 2b−1}, εσds

((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2b−1},
and 2b+ 1 ̸∈ Jordρ(σ). Also, Jord(σds) = Jord(σ) ∪ {(2b+ 1, ρ)}.

If b = 1
2
, from Lemma 3.6 we deduce that εσds

(2, ρ) = 1. Let us now
assume that b > 1

2
.

By the classification obtained in [14] and [16], there is an ordered k-tuple
(σ1, σ2, . . . , σk) of discrete series representations such that σ1

∼= σds, σk is
strongly positive, and for every i = 1, 2, . . . , k − 1 there are (ai, ρ), (bi, ρi) ∈
Jord(σi) such that ai = (bi) in Jordρi(σi) and

σi ↪→ δ([ν−ai−1

2 ρi, ν
bi−1

2 ρi])o σi+1.

Note that if (2, ρ) ∈ Jord(σi), for some i ∈ {1, 2, . . . , k}, then εσds
(2, ρ) =

εσi
(2, ρ).
If k = 1, from Lemma 3.5 follows that εσds

(2, ρ) = 1.

Suppose that k ≥ 2. It follows that µ∗(⟨∆⟩oσ) ≥ δ([ν−a1−1
2 ρ1, ν

b1−1
2 ρ1])⊗

σ2. Thus, there are 0 ≤ j ≤ i ≤ b + 1
2
and an irreducible constituent π ⊗ σ′
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of µ∗(σ) such that

δ([ν−a1−1
2 ρ1, ν

b1−1
2 ρ1]) ≤ ⟨[ν−bρ, ν− 1

2
−iρ]⟩ × ⟨[ν

1
2ρ, νj− 1

2ρ]⟩ × π

and σ2 ≤ ⟨[ν 1
2
+jρ, νi− 1

2ρ]⟩ o σ′. Since b > 1
2
and σ is square-integrable,

it follows that j = 0 and i ∈ {b − 1
2
, b + 1

2
}. If i = b + 1

2
, then π ∼=

δ([ν−a1−1
2 ρ1, ν

b1−1
2 ρ1]) and, by [18, Theorem 2.3], σ′ is a discrete series such

that Jord(σ) = Jord(σ′) ∪ {(a1, ρ1), (b1, ρ1)}. Since σ2 ≤ ⟨∆⟩o σ′, it follows
that if ρ1 ∼= ρ then a1 > 2b+ 1.

On the other hand, if i = b − 1
2
, then ρ1 ∼= ρ, a1 = 2b + 1 = (b1) in

Jordρ(σds) and π ∼= δ([ν−b+1ρ, ν
b1−1

2 ρ]). Since in Jordρ(σ) then we have
(b1) = 2b − 1, again from [18, Theorem 2.3] we conclude that σ′ is a
discrete series such that Jord(σ) = Jord(σ′) ∪ {(2b − 1, ρ), (b1, ρ)}. Now,

σ2 ≤ ⟨[ν 1
2ρ, νb−1ρ]⟩o σ′.

Repeating this procedure, we deduce that either there is c ≥ 1
2
and

a discrete series σ′′ such that σk ≤ ⟨[ν 1
2ρ, νcρ]⟩ o σ′′, or there is an i ∈

{2, 3, . . . , k − 1} and a discrete series σ′′ such that σi ≤ ν
1
2ρo σ′′.

If σk ≤ ⟨[ν 1
2ρ, νcρ]⟩o σ′′ for some c ≥ 1

2
, from Lemma 3.5 we obtain that

εσk
(2, ρ) = 1. If σi ≤ ν

1
2ρ o σ′′ for some i ∈ {2, 3, . . . , k − 1}, from Lemma

3.6 we get εσi
(2, ρ) = 1. In any case, it follows that εσds

(2, ρ) = 1.

Consequently, σds is a subrepresentation of ν
1
2ρo σ′

ds, where Jord(σds) =
Jord(σ′

ds) ∪ {(2, ρ)}. In the same way as in the proof of Proposition 3.3 we
obtain that σds is a subrepresentation of ⟨∆⟩oσ′, for a discrete series σ′ such
that x ∈ Jordρ(σ

′) for all x ∈ {2, 4, . . . , 2b − 1}, εσ′((x , ρ), (x, ρ)) = −1 for
all x ∈ {4, 6, . . . , 2b− 1} and 2b+ 1 ̸∈ Jordρ(σ

′).

If εσ′(2, ρ) = 1, then σ′ is a subrepresentation of ν
1
2ρ o σ′′, for some

irreducible representation σ′′. Since ⟨∆⟩ × ν
1
2ρ is irreducible, we obtain an

embedding σds ↪→ ν
1
2ρ × ν

1
2ρ × ⟨[ν 3

2ρ, νbρ]⟩ o σ′′. Thus, µ∗(σds) contains an

irreducible constituent of the form ν
1
2ρ × ν

1
2ρ ⊗ π. Consequently, µ∗(ν

1
2ρ o

σ′′) ≥ ν
1
2ρ × ν

1
2ρ ⊗ π, and using transitivity of Jacquet modules we easily

deduce that this contradicts [13, Lemma 8.2]. Thus, εσ′(2, ρ) = −1.
The rest of the proof now follows on the lines of the proof of Proposition

3.3.

From Proposition 3.7 and [12, Lemma 5.10] we obtain the following cri-
terion.
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Theorem 3.8. Suppose that a = 1
2
. Then ⟨∆⟩ o σ contains a discrete se-

ries subquotient if and only if x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b − 1},
εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {4, 6, . . . , 2b−1}, 2b+1 ̸∈ Jordρ(σ), and if
b > 1

2
then εσ(2, ρ) = −1. Furthermore, if ⟨∆⟩o σ contains a discrete series

subquotient then it contains a unique discrete series subquotient, which is a
subrepresentation.

The following result completes the criteria for discrete series subquotients.

Theorem 3.9. Suppose that a < 0. Then ⟨∆⟩oσ does not contain a discrete
series subquotient.

Proof. Suppose, on the contrary, that there is a discrete series subquotient
σds of ⟨∆⟩o σ. From the cuspidal support of ⟨∆⟩o σ follows that σds is not
a strongly positive representation. Also, −a < b and, using cuspidal support
considerations in a similar way as in [4, Subsection 4.1.1], we conclude that
−2a+1, 2b+1 ̸∈ Jordρ(σ). In the same way as in the proof of Proposition 3.3
we obtain that x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . ,−2a−1}∪{−2a+3,−2a+
5, . . . , 2b− 1}. Note that Jord(σds) = Jord(σ) ∪ {(−2a+ 1, ρ), (2b+ 1, ρ)}.

Now we proceed in the same way as in the proof of Proposition 3.7 and
take an ordered k-tuple (σ1, σ2, . . . , σk) of discrete series representations such
that σ1

∼= σds, σk is strongly positive, and for every i = 1, 2, . . . , k − 1 there
are (ai, ρ), (bi, ρi) ∈ Jord(σi) such that ai = (bi) in Jordρi(σi) and

σi ↪→ δ([ν−ai−1

2 ρi, ν
bi−1

2 ρi])o σi+1.

Note that if (2, ρ) ∈ Jord(σi), for some i ∈ {1, 2, . . . , k}, then εσj
(2, ρ) =

εσi
(2, ρ), for all j ∈ {1, 2, . . . , i}. Obviously, k ≥ 2.

Since µ∗(⟨∆⟩ o σ) ≥ δ([ν−a1−1
2 ρ1, ν

b1−1
2 ρ1]) ⊗ σ2, there are 0 ≤ j ≤ i ≤

b− a+ 1 and an irreducible constituent π ⊗ σ′ of µ∗(σ) such that

δ([ν−a1−1
2 ρ1, ν

b1−1
2 ρ1]) ≤ ⟨[ν−bρ, ν−i−aρ]⟩ × ⟨[νaρ, νj+a−1ρ]⟩ × π

and σ2 ≤ ⟨[νa+jρ, νa+i−1ρ]⟩ o σ′. Using cuspidal support considerations,
we obtain that if −b ≤ −i − a, then ⟨[ν−bρ, ν−i−aρ]⟩ has to be an essen-
tially square-integrable representation, and a similar argument applies for
⟨[νaρ, νj+a−1ρ]⟩. It directly follows that i ∈ {b− a, b− a+ 1} and j ∈ {0, 1}.

If i = b−a+1 and j = 0, in the same way as in the proof of Proposition 3.7
we conclude that σ2 ≤ ⟨∆⟩o σ′, for a discrete series σ′ such that Jord(σ) =
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Jord(σ′) ∪ {(a1, ρ1), (b1, ρ1)}. Similarly, if i = b − a and j = 0, we conclude
that σ2 ≤ ⟨[νaρ, νb−1ρ]⟩oσ′, where σ′ is a discrete series such that Jord(σ) =
Jord(σ′) ∪ {(2b − 1, ρ), (b1, ρ)}. Note that this possibility does not appear
when −a = b− 1.

Let us now consider the case (i, j) = (b − a + 1, 1). Then we have π ∼=
δ([νa+1ρ, ν

b1−1
2 ρ]). If −a = b − 1, this is impossible because then we have

b1−1
2

= b, but 2b+ 1 ̸∈ Jordρ(σ). If −a < b− 1, it follows that b1−1
2

< b.
If a < −1

2
, in Jordρ(σ) we have (b1) = −2a + 1. This leads to σ2 ≤

⟨[νa+1ρ, νbρ]⟩oσ′, where σ′ is a discrete series such that Jord(σ) = Jord(σ′)∪
{(−2a − 1, ρ), (b1, ρ)}. But this is impossible since then b1 ̸∈ Jordρ(σ

′) and
b1−1
2

< b, so ⟨[νa+1ρ, νbρ]⟩oσ′ does not contain a discrete series subquotient.
If a = −1

2
, since in Jordρ(σds) we have (b1) = −2a + 1, it follows that

b1 = min(Jordρ(σ)) and εσ(2, ρ) = 1, by [24, Proposition 7.4]. From Lemma
3.6 we get that σ′ is a discrete series such that Jord(σ) = Jord(σ′)∪{(b1, ρ)}.
Now we have σ2 ≤ ⟨[ν 1

2ρ, νbρ]⟩o σ′, which is impossible since (2, ρ), (b1, ρ) ̸∈
Jord(σ′).

Thus, if j = 1, then i = b − a and the square-integrability of σ implies
that −a = b−1. If a < −1

2
, in the same way as before we conclude that σ2 ≤

⟨[νa+1ρ, νb−1ρ]⟩ o σ′, for a discrete series σ′ such that Jord(σ) = Jord(σ′) ∪
{(−2a− 1, ρ), (b1, ρ)}. If a = −1

2
, then σ2 ≤ ν

1
2ρo σ′, for a discrete series σ′

such that Jord(σ) = Jord(σ′) ∪ {(b1, ρ)}, and b1 = min(Jordρ(σ)).
Repeating the same arguments, we conclude that if σl ≤ ⟨[νcρ, νdρ]⟩oσ′,

for some l ∈ {1, 2, . . . , k − 1}, for 0 < −c < d and a discrete series σ′, then
there is an ordered pair (i, j) ∈ {(0, 0), (1, 0), (1, 1)} and a discrete series σ′′

such that σl+1 ≤ ⟨[νc+jρ, νd−iρ]⟩ o σ′′. Furthermore, if (i, j) = (1, 1), then
−c = d− 1.

Since σk is strongly positive, it is not a subquotient of an induced rep-
resentation of the form ⟨[νcρ, νdρ]⟩ o σ′, for 0 < −c < d and σ′ a discrete
series. Thus, there is an m ∈ {1, 2, . . . , k− 1} and discrete series representa-

tions σ′, σ′′ such that σm ≤ ⟨[ν− 1
2ρ, ν

3
2ρ]⟩ o σ′ and σm+1 ≤ ν

1
2ρ o σ′′. From

Lemma 3.6 follows that εσm+1(2, ρ) = 1 and, consequently, εσm(2, ρ) = 1, so

µ∗(σm) contains an irreducible constituent of the form ν
1
2ρ ⊗ π. But, since

⟨[ν− 1
2ρ, ν

3
2ρ]⟩oσ′ contains a discrete series subquotient, we have 2 ̸∈ Jordρ(σ

′)

and it follows from the structural formula that µ∗(⟨[ν− 1
2ρ, ν

3
2ρ]⟩ o σ′) does

not contain ν
1
2ρ⊗ π, a contradiction.

To determine irreducible tempered subquotients, we need the following
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result, which is [2, Théorème 0.1] or [7, Lemma 1.3.3].

Lemma 3.10. Let a, b denote positive half-integers such that a < b, and let
ρ ∈ R(GL) denote an irreducible cuspidal unitarizable representation. Then
the induced representation δ([ν−bρ, νbρ]) × ⟨[νaρ, νb−1ρ]⟩ is irreducible and
isomorphic to ⟨[νaρ, νb−1ρ]⟩ × δ([ν−bρ, νbρ]).

Proposition 3.11. Suppose that a > 1
2
. If ⟨∆⟩ o σ contains an irreducible

tempered subquotient which is not square-integrable then x ∈ Jordρ(σ) for
all x ∈ {2a − 1, 2a + 1, . . . , 2b + 1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈
{2a+ 1, 2a+ 3, . . . , 2b− 1} and εσ((2b− 1, ρ), (2b+ 1, ρ)) = 1. Furthermore,
if ⟨∆⟩ o σ contains an irreducible tempered subquotient then it contains a
unique irreducible tempered subquotient, which is a subrepresentation.

Proof. Let us denote an irreducible tempered subquotient of ⟨∆⟩ o σ by τ .
Applying the structure formula as in the proof of [12, Lemma 4.1], it directly
follows that 2b+ 1 ∈ Jordρ(σ). Also, τ is a subrepresentation of an induced
representation of the form δ([ν−bρ, νbρ]) o σ1, where σ1 is a discrete series
such that Jord(σ) = Jord(σ1) ∪ {(2a− 1, ρ), (2b+ 1, ρ)}.

Since µ∗(⟨∆⟩ o σ) ≥ δ([ν−bρ, νbρ]) ⊗ σ1, from Theorem 2.1 we obtain
that µ∗(σ) ≥ δ([ν−b+1ρ, νbρ]) ⊗ σ2. Now [24, Proposition 7.2] implies 2b −
1 ∈ Jordρ(σ) and εσ((2b − 1, ρ), (2b + 1, ρ)) = 1. Also, from [18, Theo-
rem 2.3] follows that σ2 is a discrete series representation such that σ is
a subrepresentation of δ([ν−b+1ρ, νbρ]) o σ2, and σ1 is an irreducible sub-
quotient of ⟨[νaρ, νb−1ρ]⟩ o σ2. Proposition 3.3 implies that x ∈ Jordρ(σ2)
for all x ∈ {2a − 1, 2a + 1, . . . , 2b − 3} and εσ2((x , ρ), (x, ρ)) = −1 for all
x ∈ {2a+1, 2a+3, . . . , 2b−3}. From [16, Proposition 2.1, Lemma 5.1] or [8,
Proposition 3.1, Theorem 3.15], we conclude that also x ∈ Jordρ(σ) for all
x ∈ {2a− 1, 2a+ 1, . . . , 2b− 3} and εσ((x , ρ), (x, ρ)) = −1 for all x ∈ {2a+
1, 2a+3, . . . , 2b−3}. It remains to show that εσ((2b−3, ρ), (2b−1, ρ)) = −1,
and in the rest of the proof we can assume that a < b.

Note that µ∗(τ) does not contain an irreducible constituent of the form
νbρ× νbρ⊗ π.

From Lemma 3.10 and Theorem 3.4 we obtain an embedding

τ ↪→ ⟨[νaρ, νb−1ρ]⟩ × δ([ν−bρ, νbρ])o σ2.

By Lemma 2.2, there is an irreducible subquotient τ ′ of δ([ν−bρ, νbρ]) o σ2

such that τ is a subrepresentation of ⟨[νaρ, νb−1ρ]⟩o τ ′.
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Since 2b+ 1 ̸∈ Jordρ(σ2), in R(G) we have δ([ν−bρ, νbρ])o σ2 = τ1 + τ−1,
for mutually non-isomorphic irreducible tempered representations τ1 and τ−1.

Since 2b − 3 ∈ Jordρ(σ2), by [24, Lemma 4.1] there is a unique i ∈
{1,−1} such that τi can be written as a subrepresentation of an induced
representation of the form δ([νb−1ρ, νbρ])× δ([νb−1ρ, νbρ])oπ, for irreducible
π. If τ ′ ∼= τi, we have the following embeddings and isomorphisms:

τ ↪→ ⟨[νaρ, νb−1ρ]⟩ × δ([νb−1ρ, νbρ])× δ([νb−1ρ, νbρ])o π

↪→ ⟨[νaρ, νb−2ρ]⟩ × νb−1ρ× δ([νb−1ρ, νbρ])× δ([νb−1ρ, νbρ])o π

∼= ⟨[νaρ, νb−2ρ]⟩ × δ([νb−1ρ, νbρ])× δ([νb−1ρ, νbρ])× νb−1ρo π

↪→ ⟨[νaρ, νb−2ρ]⟩ × νbρ× νbρ× νb−1ρ× νb−1ρ× νb−1ρo π

∼= νbρ× νbρ× ⟨[νaρ, νb−2ρ]⟩ × νb−1ρ× νb−1ρ× νb−1ρo π,

which is impossible. Thus, τ ′ ∼= τ−i.
Since ν−bρo σ2 is irreducible by [19, Theorem 6.1], we have

τ ′ ↪→ δ([ν−b+1ρ, νbρ])× ν−bρo σ2

∼= δ([ν−b+1ρ, νbρ])× νbρo σ2

∼= νbρ× δ([ν−b+1ρ, νbρ])o σ2.

It follows from Lemma 2.2 that there is an irreducible subquotient σ3 of
δ([ν−b+1ρ, νbρ]) o σ2 such that τ ′ is a subrepresentation of νbρ o σ3. Also,
since µ∗(τ ′) contains an irreducible constituent of the form νbρ× νbρ⊗π, we
get that µ∗(σ3) ≥ νbρ⊗ π′, for some irreducible π′. From [17, Theorem 2.1]
we easily obtain that σ3 has to be a discrete series subrepresentation of
δ([ν−b+1ρ, νbρ])o σ2. In R(G) we have δ([ν−b+1ρ, νb−1ρ])o σ2 = τ ′1 + τ ′−1, for
mutually non-isomorphic irreducible tempered representations τ ′1 and τ ′−1,
and there is a unique j ∈ {1,−1} such that σ3 is a subrepresentation of
νbρo τ ′j.

Using [24, Lemma 4.1] again, we see that there is a unique k ∈ {1,−1}
such that τ ′k can be written as a subrepresentation of an induced representa-
tion of the form νb−1ρ× νb−1ρo π, for some irreducible π ∈ R(G).

If j = k, from τ ′ ↪→ νbρ×νbρ×νb−1ρ×νb−1ρoπ and 2b−1 ̸∈ Jordρ(σ2) we
get τ ′ ↪→ δ([νb−1ρ, νbρ])× δ([νb−1ρ, νbρ])o π, a contradiction. Thus, j = −k.

Let us prove that εσ3((2b− 3, ρ), (2b− 1, ρ)) = −1 (we note that this also
follows from the proof of [8, Theorem 3.15], but we include a proof here,
for the sake of completeness). Suppose that εσ3((2b − 3, ρ), (2b − 1, ρ)) = 1.
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Then µ∗(σ3) contains δ([ν
−b+2ρ, νb−1ρ])⊗σ4, for some discrete series σ4. Since

σ3 ≤ νbρo τ ′j, using the structural formula and 2b− 1, 2b+1 ̸∈ Jordρ(σ2), we
obtain that σ4 ≤ νbρ o π′, for an irreducible representation π′ ∈ R(G) such
that µ∗(τ ′j) ≥ δ([ν−b+2ρ, νb−1ρ])⊗ π′. Obviously, π′ ≤ νb−1ρo σ2. Using [24,
Theorem 8.2], we deduce that the Jacquet module of σ4 with respect to the
appropriate parabolic subgroup contains νbρ⊗ νb−1ρ⊗ σ2.

It is now easy to see that the Jacquet module of τ ′j with respect to the ap-
propriate parabolic subgroup contains δ([ν−b+2ρ, νb−1ρ])⊗νb−1ρ⊗σ2. Transi-
tivity of the Jacquet modules implies that there is an irreducible constituent
π1 ⊗ σ2 of µ∗(τ ′j) such that the Jacquet module of π1 with respect to the
appropriate parabolic subgroup contains δ([ν−b+2ρ, νb−1ρ]) ⊗ νb−1ρ. Since
2b − 1, 2b + 1 ̸∈ Jordρ(σ2), we deduce that π1

∼= δ([ν−b+2ρ, νb−1ρ]) × νb−1ρ,
and it can now be directly seen that τ ′j can be written as a subrepresenta-
tion of an induced representation of the form νb−1ρ × νb−1ρ o π, for some
irreducible π ∈ R(G), a contradiction.

From τ ↪→ ⟨[νaρ, νb−1ρ]⟩ × νbρ o σ3, Lemma 2.2 and the fact that µ∗(τ)
does not contain an irreducible constituent of the form νbρ×νbρ⊗π, we obtain
τ ↪→ ⟨[νaρ, νbρ]⟩oσ3. Consequently, the Jacquet module of τ with respect to
the appropriate parabolic subgroup contains νaρ⊗νa+1ρ⊗· · ·⊗νbρ×νbρ⊗τ ′j.

Since τ is an irreducible subquotient of ⟨∆⟩ o σ, using the structural
formula and the third part of Lemma 3.1 we deduce that µ∗(νbρoσ) contains
νbρ×νbρ⊗τ ′j. Thus, µ

∗(σ) contains νbρ⊗τ ′j and it follows from [24, Section 7]
that σ is a unique irreducible subrepresentation of νbρ o τ ′j. Thus, σ ∼= σ3.
Consequently, εσ((2b − 3, ρ), (2b − 1, ρ)) = −1 and τ is a subrepresentation
of ⟨[νaρ, νbρ]⟩o σ.

Since µ∗(σ) contains δ([ν−b+1ρ, νbρ])⊗ σ2 with multiplicity one and σ1 is
the unique discrete series subquotient of ⟨[νaρ, νb−1ρ]⟩oσ2, δ([ν

−bρ, νbρ])⊗σ1

appears with multiplicity one in µ∗(⟨∆⟩ o σ), so τ is the unique irreducible
tempered subquotient of ⟨∆⟩o σ.

From Proposition 3.11 and [12, Lemma 4.6] we obtain

Theorem 3.12. Suppose that a > 1
2
. Then ⟨∆⟩o σ contains an irreducible

tempered subquotient which is not square-integrable if and only if x ∈ Jordρ(σ)
for all x ∈ {2a − 1, 2a + 1, . . . , 2b + 1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈
{2a+ 1, 2a+ 3, . . . , 2b− 1} and εσ((2b− 1, ρ), (2b+ 1, ρ)) = 1. Furthermore,
if ⟨∆⟩ o σ contains an irreducible tempered subquotient then it contains a
unique irreducible tempered subquotient, which is a subrepresentation.
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In the same way as in the proof of Lemma 3.6, we obtain the following
result.

Proposition 3.13. Suppose that a = b = 1
2
. Then ⟨∆⟩oσ = ν

1
2ρoσ contains

an irreducible tempered subquotient which is not square-integrable if and only
if (2, ρ) ∈ Jord(σ) and εσ(2, ρ) = 1. In that case, in R(G) we have ν

1
2ρ o

σ = L(ν− 1
2ρ, σ) + τ , where τ is an irreducible tempered subrepresentation of

ν
1
2ρo σ.

Proposition 3.14. Suppose that a = 1
2
and a < b. If ⟨∆⟩ o σ contains

an irreducible tempered subquotient which is not square-integrable then x ∈
Jordρ(σ) for all x ∈ {2, 4, . . . , 2b + 1}, εσ((x , ρ), (x, ρ)) = −1 for all x ∈
{4, 6, . . . , 2b− 1}, εσ((2b− 1, ρ), (2b+ 1, ρ)) = 1 and εσ(2, ρ) = −1. Further-
more, if ⟨∆⟩oσ contains an irreducible tempered subquotient then it contains
a unique irreducible tempered subquotient, which is a subrepresentation.

Proof. We will comment only the case b = 3
2
, since the case b > 3

2
can be

handled in the same way as in the proof of Proposition 3.11, using Theorem
3.8.

Suppose that b = 3
2
and let us denote by τ an irreducible tempered but

not square-integrable subquotient of ⟨∆⟩o σ. Then τ is a subrepresentation

of δ([ν− 3
2ρ, ν

3
2ρ]) o σ1, for a discrete series σ1. Using Frobenius reciprocity

and the structural formula we obtain that µ∗(σ) ≥ δ([ν− 1
2ρ, ν

3
2ρ])⊗σ2, where

σ2 is a discrete series such that Jord(σ) = Jord(σ2) ∪ {(2, ρ), (4, ρ)} and σ1

is a subquotient of ν
1
2ρo σ2.

It follows that τ is a subrepresentation of ν
1
2ρ× δ([ν− 3

2ρ, ν
3
2ρ])o σ2, and

there is an irreducible subquotient τ1 of δ([ν− 3
2ρ, ν

3
2ρ])o σ2 such that τ is a

subrepresentation of ν
1
2ρ o τ1. Since µ∗(τ) does not contain an irreducible

constituent of the form ν
3
2ρ×ν

3
2ρ⊗π, using [24, Lemma 4.4] we deduce that

τ1 is a unique irreducible tempered subrepresentation of δ([ν− 3
2ρ, ν

3
2ρ]) o

σ2 which does not contain δ([ν
1
2ρ, ν

3
2ρ]) × δ([ν

1
2ρ, ν

3
2ρ]) ⊗ σ2 in the Jacquet

module with respect to the appropriate parabolic subgroup.
Since (2, ρ) ̸∈ Jord(σ2), it follows in the same way as in the proof of

Proposition 3.11 that τ1 is a subrepresentation of ν
3
2ρ o σ3, for some dis-

crete series subrepresentation σ3 of δ([ν− 1
2ρ, ν

3
2ρ])o σ2. From the classifica-

tion of discrete series follows that σ3 is a subrepresentation of ν
3
2ρ o τ2, for

an irreducible tempered subrepresentation τ2 of δ([ν− 1
2ρ, ν

1
2ρ]) o σ2. Using

µ∗(τ1) ̸≥ δ([ν
1
2ρ, ν

3
2ρ])×δ([ν

1
2ρ, ν

3
2ρ])⊗σ2 we get that µ

∗(τ2) ̸≥ ν
1
2ρ×ν

1
2ρ⊗σ2.
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Let us prove that εσ3(2, ρ) = −1 (we note that this also follows from the
proof of [8, Lemma 4.9], but we include a proof here, for the sake of complete-
ness). Suppose that εσ3(2, ρ) = 1. Then there is an irreducible representation

π ∈ R(G) such that µ∗(σ3) ≥ ν
1
2ρ⊗π. The square-integrability criterion im-

plies that π is a discrete series. Using (2, ρ) ̸∈ Jord(σ2) again, we deduce

that π ≤ ν
3
2ρ o π′ for an irreducible subquotient π′ of ν

1
2ρ o σ2 such that

µ∗(τ2) ≥ ν
1
2ρ⊗π′. It follows from [13, Lemma 8.3] that µ∗(π) ≥ ν

3
2ρ⊗π′′ for

some discrete series π′′. Since (4, ρ) ̸∈ Jord(σ2) we obtain that π′ ∼= π′′, i.e.,
π′ is also a discrete series representation. By the second part of Lemma 3.6,
π′ is a subrepresentation of ν

1
2ρ o σ2. Thus, the Jacquet module of τ2 with

respect to an appropriate parabolic subgroup contains ν
1
2ρ⊗ν

1
2ρ⊗σ2. Tran-

sitivity of Jacquet modules implies that there is an irreducible constituent
π1 ⊗ σ2 of µ∗(τ2) such that the Jacquet module of π1 with respect to the

appropriate parabolic subgroup contains ν
1
2ρ ⊗ ν

1
2ρ. Since τ2 is a subrepre-

sentation of δ([ν− 1
2ρ, ν

1
2ρ])oσ2 and (2, ρ) ̸∈ Jord(σ2), it directly follows that

π1
∼= ν

1
2ρ× ν

1
2ρ, a contradiction.

Since τ ↪→ ν
1
2ρ×ν

3
2ρoσ3, in the same way as in the proof of Proposition

3.11 we deduce τ ↪→ ⟨∆⟩o σ3 and σ ∼= σ3, so the proposition is proved.

From Proposition 3.14 and [12, Lemma 5.11] we obtain

Theorem 3.15. Suppose that a = 1
2
and a < b. Then ⟨∆⟩ o σ contains an

irreducible tempered subquotient which is not square-integrable if and only if
x ∈ Jordρ(σ) for all x ∈ {2, 4, . . . , 2b + 1}, εσ((x , ρ), (x, ρ)) = −1 for all
x ∈ {4, 6, . . . , 2b − 1}, εσ((2b − 1, ρ), (2b + 1, ρ)) = 1 and εσ(2, ρ) = −1.
Furthermore, if ⟨∆⟩o σ contains an irreducible tempered subquotient then it
contains a unique irreducible tempered subquotient, which is a subrepresen-
tation.

Proposition 3.16. If a < 0, then ⟨∆⟩ o σ does not contain an irreducible
tempered subquotient.

Proof. Suppose, on the contrary, that there is an irreducible tempered sub-
quotient τ of ⟨∆⟩o σ. By Theorem 3.9, τ is not a discrete series representa-
tion. Two possibilities will be studied separately.

Let us first assume that τ is a subrepresentation of an induced repre-
sentation of the form δ([ν−xρ1, ν

xρ1]) × δ([ν−yρ2, ν
yρ2]) o σ′, for a discrete

series σ′. From the cuspidal support of ⟨∆⟩o σ we deduce that ρ1 ∼= ρ2 ∼= ρ,
{x, y} = {−a, b}, x ̸= y, and −2a + 1, 2b + 1 ∈ Jordρ(σ). Then there is
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an irreducible tempered subrepresentation τ ′ of δ([ν−bρ, νbρ])o σ′ such that
µ∗(τ) ≥ δ([νaρ, ν−aρ]) ⊗ τ ′. From µ∗(⟨∆⟩ o σ) we deduce that µ∗(σ) ≥
δ([νa+1ρ, ν−aρ]) ⊗ σ1, for a discrete series σ1 such that −2a + 1 ̸∈ Jordρ(σ1)
and ⟨[νa+1ρ, νbρ]⟩ o σ1 ≥ τ ′. From Theorems 3.9 and 3.15 we get that
⟨[νa+1ρ, νbρ]⟩ o σ1 does not contain an irreducible tempered subquotient, a
contradiction.

Inspecting the cuspidal support of ⟨∆⟩o σ we obtain that the only other
possibility is that τ is a subrepresentation of an induced representation of
the form δ([ν−xρ, νxρ]) o σ′, where x ∈ {−a, b} and σ′ is a discrete series.
Also, 2x + 1 ∈ Jordρ(σ), and if −a < b then 2y + 1 ̸∈ Jordρ(σ) for y such
that {x, y} = {−a, b}.

If x = −a < b, x = b > −a+1 or x = b = −a > 1
2
, we get a contradiction

in the same way as in the previously considered case.
If x = b = −a = 1

2
, it follows that τ is a subrepresentation of δ([ν− 1

2ρ, ν
1
2ρ])o

σ′, for a discrete series σ′ which is a subquotient of ν
1
2ρ o σ1, where σ1 is a

discrete series such that µ∗(σ) ≥ ν
1
2ρ ⊗ σ1. From Lemma 3.6 we obtain an

embedding τ ↪→ ν
1
2ρ× ν

1
2ρ× ν− 1

2ρoσ1, which is impossible since µ∗(τ) does

not contain an irreducible constituent of the form ν
1
2ρ× ν

1
2ρ⊗ π.

It remains to consider the case x = b = −a + 1. First, assume that
−a > 1

2
. Since −2a + 1 ̸∈ Jordρ(σ), using the structural formula we deduce

that µ∗(σ) ≥ δ([ν−b+2ρ, νbρ]) ⊗ σ1, in Jordρ(σ) we have (2b + 1) = −2a −
1 and σ1 is a discrete series representation. Since σ′ ≤ ⟨[νa+1ρ, νb−1ρ]⟩ o
σ1 and a + 1 < 0, we get a contradiction with Theorem 3.9. Let us now
assume that −a = 1

2
. Then min(Jordρ(σ)) = 4 and εσ(4, ρ) = 1. Also, we

easily see that σ′ is a subquotient of ν
1
2ρ o σ1, for a discrete series σ1 such

that σ is a subrepresentation of δ([ν− 1
2ρ, ν

3
2ρ]) o σ1. By Lemma 3.6, σ′ is a

subrepresentation of ν
1
2ρo σ1 and we have

τ ↪→ δ([ν− 3
2ρ, ν

3
2ρ])× ν

1
2ρo σ1

∼= ν
1
2ρ× δ([ν− 3

2ρ, ν
3
2ρ])o σ1,

so µ∗(τ) contains an irreducible constituent of the form ν
1
2ρ⊗ π. But, since

2 ̸∈ Jordρ(σ), µ
∗(⟨[ν− 1

2ρ, ν
3
2ρ]⟩oσ) does not contain ν

1
2ρ⊗π, a contradiction.

This ends the proof.

4 Composition series in Jordρ(σ) ̸= ∅ case

In this section we again assume that ∆ = [νaρ, νbρ], where ρ ∈ R(GL) is an
irreducible self-contragredient representation, a and b are half-integers such
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that a+ b ≥ 0, and σ ∈ R(G) is a discrete series such that Jordρ(σ) ̸= ∅ and
all elements of Jordρ(σ) are even integers.

We determine complete composition series of the induced representation
⟨∆⟩ o σ. To obtain candidates for non-tempered irreducible subquotients,
we need the following two results.

Proposition 4.1. Suppose that L(δ1, δ2, . . . , δk, τ) is an irreducible non-
tempered subquotient of ⟨∆⟩oσ, and let δi ∼= δ([νaiρi, ν

biρi]) for i = 1, 2, . . . , k.
Then for all i = 1, 2, . . . , k we have ρi ∼= ρ and bi − ai ∈ {0, 1}.

Proof. Suppose, on the contrary, that there is some j ∈ {1, 2, . . . , k} such
that bj − aj ≥ 2. Let us denote the minimal such j by jmin. Using [12,
Lemma 2.6] we deduce that there are c and d, a ≤ c ≤ 1

2
, −1

2
≤ d ≤ b, such

that L(δjmin
, δjmin+1, . . . , δk, τ) is an irreducible subquotient of ⟨[νcρ, νdρ]⟩oσ.

Since L(δjmin
, δjmin+1, . . . , δk, τ) is a subrepresentation of δjmin

oL(δjmin+1, . . . , δk, τ),
it follows that µ∗(⟨[νcρ, νdρ]⟩o σ) contains δjmin

⊗ L(δjmin+1, . . . , δk, τ).
Using the structural formula, we deduce that there are 0 ≤ j ≤ i ≤

d− c+ 1 and an irreducible constituent π ⊗ σ′ of µ∗(σ) such that

δ([νajminρjmin
, νbjminρjmin

]) ≤ ⟨[ν−dρ, ν−c−iρ]⟩ × ⟨[νcρ, νc+j−1ρ]⟩ × π,

and L(δjmin+1, . . . , δk, τ) ≤ ⟨[νc+jρ, νc+i−1ρ]⟩oσ′. Since σ is square-integrable
and bjmin

− ajmin
≥ 2, it follows that ρjmin

∼= ρ, c = −d + 1 ≤ −1
2
, i = d − c

and j = 1. Thus, ajmin
= −d, bjmin

= d− 1, and π ∼= δ([ν−d+2ρ, νd−1ρ]). Note
that this implies (2d− 1, ρ) ∈ Jord(σ).

There are two possibilities to consider. Let us first assume that d ≥
5
2
. Then we have −d + 2 < 0 and, by the classification of discrete series

and [18, Theorem 2.3], σ′ is a discrete series such that (2d − 1, ρ), (2d −
3, ρ) ̸∈ Jord(σ′). By Theorem 3.9 and Proposition 3.16, jmin < k and, since
(2d − 3, ρ) ̸∈ Jord(σ′), we have δjmin+1 ∈ {νc+1ρ, νcρ, δ([νcρ, νc+1ρ])}. From
e(δjmin

) = −1
2
and e(δjmin

) ≤ e(δjmin+1), we obtain that the only possibility

is c = −3
2
and δjmin+1

∼= ν− 1
2ρ. This implies δjmin

× δjmin+1
∼= δjmin+1 × δjmin

,

so µ∗(L(δjmin
, δjmin+1, . . . , δk, τ)) ≥ ν− 1

2ρ⊗ π′, for some irreducible π′. But, it

can be seen at once that µ∗(⟨[ν− 3
2ρ, ν

5
2ρ]⟩o σ) does not contain ν− 1

2ρ⊗ π′, a
contradiction.

It remains to consider the case d = 3
2
. Then εσ(2, ρ) = 1 and σ′ is

a discrete series such that (2, ρ) ̸∈ Jord(σ′). Also, L(δjmin+1, . . . , δk, τ) ≤
ν

1
2ρ o σ′, and in the appropriate Grothendieck group we have ν

1
2ρ o σ′ =

σ + L(ν− 1
2ρ, σ′). If L(δjmin+1, . . . , δk, τ) ∼= σ, from σ ↪→ ν

1
2ρo σ′ we get that
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L(δjmin+1, . . . , δk, τ) is a subrepresentation of ν
1
2ρ×ν

1
2ρ×δ([ν− 3

2ρ, ν− 1
2ρ])oσ′,

which is impossible since µ∗(⟨[ν− 1
2ρ, ν

3
2ρ]⟩ o σ) does not contain an irre-

ducible constituent of the form ν
1
2ρ × ν

1
2ρ ⊗ π′. On the other hand, if

L(δjmin+1, . . . , δk, τ) ∼= L(ν− 1
2ρ, σ′), a similar commutativity argument shows

that L(δjmin+1, . . . , δk, τ) is a subrepresentation of ν− 1
2ρ×ν

1
2ρ×ν− 1

2ρ×ν− 3
2ρo

σ′. But, it can be easily seen that ν− 1
2ρ ⊗ ν

1
2ρ ⊗ ν− 1

2ρ ⊗ ν− 3
2ρ ⊗ σ′ is not

contained in the Jacquet module of ⟨[ν− 1
2ρ, ν

3
2ρ]⟩ o σ with respect to the

appropriate parabolic subgroup, a contradiction.
Consequently, bi − ai ∈ {0, 1} for all i = 1, 2, . . . , k and [12, Lemma 2.6]

implies that ρi ∼= ρ for all i.

Proposition 4.2. Suppose that L(δ1, δ2, . . . , δk, τ) is an irreducible non-
tempered subquotient of ⟨∆⟩oσ, and let δi ∼= δ([νaiρ, νbiρ]) for i = 1, 2, . . . , k.
Suppose that there is a j ∈ {1, 2, . . . , k} such that bj−aj = 1, and let l = a+b.
Then the following holds:

(1) a < 0 and −a < b,

(2) al = bl − 1 = a− 1 and for i < l we have ai = bi = −b+ i− 1,

(3) there is a positive half-integer x, x ≤ −a, such that ⟨[ν 1
2ρ, νxρ]⟩ o σ

contains an irreducible tempered subquotient,

(4) if for j′ ∈ {j + 1, j + 2, . . . , k} we have bj′ − aj′ = 1, then bi − ai = 1 for
all i ∈ {j + 1, j + 2, . . . , j′ − 1}.

Proof. Let us denote by jmin the minimal j such that bj − aj = 1. It follows
directly from [12, Lemma 2.6] that a < 0. Suppose that −a = b. Using [12,
Lemma 2.6] again, we obtain that jmin ≥ 2, L(δjmin−1, δjmin

, . . . , δk, τ) is an
irreducible subquotient of ⟨[ν−cρ, νcρ]⟩ o σ, for some c such that 3

2
≤ c ≤ b,

and L(δjmin
, δjmin+1, . . . , δk, τ) is an irreducible subquotient of ⟨[ν−c+1ρ, νcρ]⟩o

σ.
It follows that δjmin−1

∼= ν−cρ and δjmin
∼= δ([ν−cρ, ν−c+1ρ]). Now a simple

commutativity argument, together with the Frobenius reciprocity, implies
that µ∗(L(δjmin−1, δjmin

, . . . , δk, τ)) ≥ ν−c+1ρ ⊗ π, for some irreducible π. It
follows from the structural formula and the square-integrability criterion that
µ∗(⟨[ν−cρ, νcρ]⟩o σ) does not contain an irreducible constituent of the form
ν−c+1ρ⊗ π, a contradiction. Thus, −a < b.
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If for all i ∈ {jmin, jmin + 1, . . . , k} we have bi − ai = 1, then a repeated
application of [12, Lemma 2.6] shows that τ is an irreducible subquotient of

ν
1
2ρo σ.
Suppose that there is an i ∈ {jmin + 1, . . . , k} such that bi − ai = 0,

and let us denote the minimal such i by imin. Again, then there is some c,
3
2
≤ c ≤ b, such that L(δimin−1, δimin

, . . . , δk, τ) is an irreducible subquotient
of ⟨[ν−c+1ρ, νcρ]⟩ o σ, δimin−1

∼= δ([ν−cρ, ν−c+1ρ]) and L(δimin
, . . . , δk, τ) is

an irreducible subquotient of ⟨[ν−c+2ρ, νc−1ρ]⟩ o σ. Note that we also have
c ≤ −a + 1. It follows that bimin

∈ {−c + 2,−c + 1}. If bimin
= −c +

1, a simple commutativity argument and Frobenius reciprocity imply that
µ∗(L(δimin−1, δimin

, . . . , δk, τ)) ≥ ν−c+1ρ × ν−c+1ρ ⊗ π, which is impossible
since µ∗(⟨[ν−c+1ρ, νcρ]⟩ o σ) does not contain an irreducible constituent of
the form ν−c+1ρ× ν−c+1ρ⊗ π. Thus, bimin

= −c+ 2 and L(δimin+1, . . . , δk, τ)
is an irreducible subquotient of ⟨[ν−c+3ρ, νc−1ρ]⟩ o σ. Since for i < j we
have e(δi) ≤ e(δj), a repeated application of [12, Lemma 2.6] shows that
for i ∈ {imin, imin + 1, . . . , k} we have ai = bi and that τ is an irreducible

subquotient of ⟨[ν 1
2ρ, νc−1ρ]⟩o σ.

If b > −a + 1, then we have a1 = b1 and a1 ∈ {−b, a}. If a1 = a,
then L(δ2, δ3, . . . , δk, τ) is an irreducible subquotient of ⟨[νa+1ρ, νbρ]⟩ o σ,
and using e(δ1) ≤ e(δ2) we deduce that a2 = b2 = a+1. Repeating the same
arguments, we obtain that ai = bi for all i = 1, 2, . . . , k, a contradiction.
Thus, if b > −a+ 1 we have a1 = b1 = −b.

Proceeding in the same way, we get that ai = bi = −b + i − 1 for
i = 1, 2, . . . , l − 1, and L(δl, δl+1, . . . , δk, τ) is an irreducible subquotient of
⟨[νaρ, ν−a+1ρ]⟩o σ. Suppose that l < jmin. Then al = bl and al ∈ {a, a− 1}.
If al = a, in the same way as before we conclude that ai = bi for all
i = 1, 2, . . . , k, a contradiction. If al = a− 1, it follows that L(δl+1, . . . , δk, τ)
is an irreducible subquotient of ⟨[νaρ, ν−aρ]⟩ o σ, where l + 1 ≤ jmin, and
we have already seen that this is impossible. Consequently, l = jmin and
al = bl − 1 = a− 1. This finishes the proof.

The following proposition will be useful when proving that an irreducible
representation of certain type is a subquotient of ⟨∆⟩o σ.

Proposition 4.3. Let c denote a positive half-integer, and suppose that c ≥
3
2
. Suppose that L(δ1, δ2, . . . , δk, τ) is an irreducible subquotient of ⟨[ν−c+1ρ, νcρ]⟩o

σds, for some discrete series σds, and δi ∼= δ([νaiρ, ν−c+iρ]), ai ∈ {−c + i −
1,−c + i}, for i = 1, 2, . . . , k. Then L(δ([ν−c−1ρ, ν−cρ]), δ1, . . . , δk, τ) is an
irreducible subquotient of ⟨[ν−cρ, νc+1ρ]⟩o σds.
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Proof. Since L(δ([ν−c−1ρ, ν−cρ]), δ1, . . . , δk, τ) is a subrepresentation of ν−cρ×
ν−c−1ρoL(δ1, . . . , δk, τ), from Lemma 2.2 follows that there is an irreducible
subquotient π of ν−c−1ρoL(δ1, . . . , δk, τ) such that L(δ([ν−c−1ρ, ν−cρ]), δ1, . . .,
δk, τ) is a subrepresentation of ν−cρo π.

The Jacquet module of L(δ([ν−c−1ρ, ν−cρ]), δ1, . . . , δk, τ) with respect to
the appropriate parabolic subgroup contains ν−cρ⊗ν−c−1ρ⊗L(δ1, . . . , δk, τ).
Since τ is tempered and δi ∼= δ([νaiρ, ν−c+iρ]), it follows directly from The-
orem 2.1 that µ∗(π) does not contain an irreducible constituent of the form
ν−cρ⊗π′. Thus, we obtain that µ∗(π) contains ν−c−1ρ⊗L(δ1, . . . , δk, τ). Since
L(ν−c−1ρ, δ1, . . . , δk, τ) is a subrepresentation of ν−c−1ρoL(δ1, . . . , δk, τ) and
it can be easily seen that µ∗(ν−c−1ρ o L(δ1, . . . , δk, τ)) contains ν−c−1ρ ⊗
L(δ1, . . . , δk, τ) with multiplicity one, it follows that π ∼= L(ν−c−1ρ, δ1, . . . , δk, τ).

Also, π ≤ ν−c−1ρ× ⟨[ν−c+1ρ, νcρ]⟩o σds. In R(G) we have

ν−c−1ρ× ⟨[ν−c+1ρ, νcρ]⟩o σds = ⟨[ν−c+1ρ, νcρ]⟩ × νc+1ρo σds

= ⟨[ν−c+1ρ, νc+1ρ]⟩o σds+

+ L(ν−c+1ρ, . . . , νc−1ρ, δ([νcρ, νc+1ρ]))o σds.

From µ∗(π) ≥ ν−c−1ρ⊗ L(δ1, . . . , δk, τ), we conclude that π is a subquotient
of ⟨[ν−c+1ρ, νc+1ρ]⟩o σds.

Consequently, L(δ([ν−c−1ρ, ν−cρ]), δ1, . . . , δk, τ) is a subquotient of ν
−cρ×

⟨[ν−c+1ρ, νc+1ρ]⟩oσds and, since µ
∗(L(δ([ν−c−1ρ, ν−cρ]), δ1, . . . , δk, τ)) ≥ ν−cρ⊗

π in the same way as before we deduce that L(δ([ν−c−1ρ, ν−cρ]), δ1, . . . , δk, τ)
is a subquotient of ⟨[ν−cρ, νc+1ρ]⟩o σds.

We are now ready to provide a description of the composition series, using
a case-by-case consideration.

Theorem 4.4. Suppose that a ≥ 3
2
. Let us denote by x1 the minimal

positive even integer such that x1 ≥ 2a + 1 and x1 ̸∈ Jordρ(σ). Also,
let us denote by x2 the minimal x ∈ Jordρ(σ) such that x ≥ 2a + 1 and
εσ((x , ρ), (x, ρ)) = 1, if such x exists. Otherwise, let x2 = x1 + 1. Let xmin

denote min{x1−1
2

, x2−1
2

}, and let τ denote the unique irreducible tempered sub-
quotient of ⟨[νaρ, νxminρ]⟩o σ.

(1) If 2a− 1 ̸∈ Jordρ(σ) or 2a− 1 ∈ Jordρ(σ) and xmin > b, then we have

⟨∆⟩o σ = L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ).
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(2) If 2a− 1 ∈ Jordρ(σ) and xmin ≤ b, then in R(G) we have

⟨∆⟩oσ = L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ)+L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, τ).

Proof. First part of the theorem follows from [12, Theorem 4.8].
For the second part, from the proof of [12, Proposition 4.7] follows that

both L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ) and L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, τ) are
subquotients of ⟨∆⟩ o σ. Let us prove that there are no other irreducible
subquotients.

By Theorems 3.4 and 3.12, any other irreducible subquotient has to be
non-tempered. Let L(δ1, δ2, . . . , δk, τ

′) denote a non-tempered irreducible
subquotient of ⟨∆⟩ o σ, and δi ∼= δ([νaiρi, ν

biρi]) for i = 1, 2, . . . , k. From
Proposition 4.1 we get ai = bi for all i. Now [12, Lemma 2.6] implies that τ ′

is a subquotient of ⟨[νaρ, νcρ]⟩o σ for some c ≤ b and δi ∼= ν−b+i−1ρ for i =
1, 2, . . . , b−c. Theorems 3.4 and 3.12 imply c ∈ {a−1, xmin}. Thus, every ir-
reducible subquotient of ⟨∆⟩oσ is isomorphic either to L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ)
or to L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, τ).

It is easy to see that both ν−bρ⊗ν−b+1ρ⊗· · ·⊗ν−aρ⊗σ and ν−bρ⊗ν−b+1ρ⊗
· · ·⊗ν−xmin−1ρ⊗τ appear with multiplicity one in the Jacquet module of ⟨∆⟩o
σ with respect to the appropriate parabolic subgroup. Consequently, both
L(ν−bρ, ν−b+1ρ, . . . , ν−aρ, σ) and L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, τ) appear in
the composition series of ⟨∆⟩ o σ with multiplicity one and the theorem is
proved.

The following theorem can be proved following the lines of the proof of
the previous one, so we skip the proof.

Theorem 4.5. Suppose that a = 1
2
.

(1) If 2 ̸∈ Jordρ(σ) or εσ(2, ρ) = 1, in R(G) we have

⟨∆⟩o σ = L(ν−bρ, ν−b+1ρ, . . . , ν− 1
2ρ, σ) + L(ν−bρ, ν−b+1ρ, . . . , ν− 3

2ρ, τ),

where τ is the unique irreducible tempered subquotient of ν
1
2ρo σ.

(2) If εσ(2, ρ) = −1, let us denote by x1 the minimal positive even integer
such that x1 ̸∈ Jordρ(σ), and by x2 the minimal x ∈ Jordρ(σ) such that
εσ((x , ρ), (x, ρ)) = 1, if such x exists. Otherwise, let x2 = x1 + 1.
Let xmin denote min{x1−1

2
, x2−1

2
}, and let τ denote the unique irreducible

tempered subquotient of ⟨[ν 1
2ρ, νxminρ]⟩o σ.
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(i) If xmin > b, we have ⟨∆⟩o σ = L(ν−bρ, ν−b+1ρ, . . . , ν− 1
2ρ, σ).

(ii) If xmin ≤ b, then in R(G) we have

⟨∆⟩o σ = L(ν−bρ, ν−b+1ρ, . . . , ν− 1
2ρ, σ)+

+ L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, τ).

Let us now complete our description in the Jordρ(σ) ̸= ∅ case.

Theorem 4.6. Suppose that a < 0.

(1) Suppose that 2 ̸∈ Jordρ(σ) or εσ(2, ρ) = 1. Let τ denote the unique

irreducible tempered subquotient of ν
1
2ρoσ. If −a = b, in R(G) we have

⟨∆⟩o σ = L(νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)+

+ L(νaρ, νaρ, . . . , ν− 3
2ρ, ν− 3

2ρ, ν− 1
2ρ, τ).

If −a < b, in R(G) we have

⟨∆⟩o σ = L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)+

+ L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 3
2ρ, ν− 3

2ρ, ν− 1
2ρ, τ)+

+ L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), . . . , δ([ν− 3
2ρ, ν− 1

2ρ]), τ).

(2) If εσ(2, ρ) = −1, let us denote by x1 the minimal positive even integer
such that x1 ̸∈ Jordρ(σ), and by x2 the minimal x ∈ Jordρ(σ) such that
εσ((x , ρ), (x, ρ)) = 1, if such x exists. Otherwise, let x2 = x1 + 1.
Let xmin denote min{x1−1

2
, x2−1

2
} and let τ denote the unique irreducible

tempered subquotient of ⟨[ν 1
2ρ, νxminρ]⟩o σ. If xmin > b, we have

⟨∆⟩o σ = L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ).

If xmin ≤ b and xmin > −a, in R(G) we have

⟨∆⟩o σ = L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)+

+L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, νaρ, . . . , ν− 1
2ρ, τ).

If xmin ≤ b and −a = b, in R(G) we have

⟨∆⟩o σ = L(νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)+

+L(νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν− 1
2ρ, τ).
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If xmin ≤ −a and −a < b, in R(G) we have

⟨∆⟩o σ = L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)+

+L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ,

ν−xminρ, . . . , ν− 1
2ρ, τ)+

+L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), . . . , δ([ν−xmin−1ρ, ν−xminρ]),

ν−xmin+1ρ, . . . , ν− 1
2ρ, τ).

Proof. We will comment only the second part of the theorem, since the first
one can be proved in the same way but more easily. By Proposition 3.16,
there are no irreducible tempered subquotients of ⟨∆⟩o σ.

If xmin > b, the claim follows from [12, Theorem 5.13].
Now we assume that xmin ≤ b. By Proposition 3.16 there are no irre-

ducible tempered subquotients. Suppose that L(δ1, δ2, . . . , δk, τ
′) is an irre-

ducible non-tempered subquotient of ⟨∆⟩ o σ such that δi ∼= νaiρi, ai < 0,
for all i = 1, 2, . . . , k. By [12, Lemma 2.6], ρi ∼= ρ for all i = 1, 2, . . . , k and
there are c and d such that a ≤ c ≤ 1

2
, c− 1 ≤ d ≤ b such that

L(δ1, δ2, . . . , δk, τ
′) ∼=

L(ν−bρ, . . . , νd−1ρ, ν−aρ, ν−a+1ρ, . . . , νc−1ρ, τ ′),

if a ≥ −d, or

L(δ1, δ2, . . . , δk, τ
′) ∼=

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−d−1ρ, ν−d−1ρ, ν−dρ, ν−d+1ρ, . . . , νc−1ρ, τ ′),

if a < −d (here we omit the part ν−bρ, . . . , νa−1ρ if −a = b), and τ ′ is
subquotient of ⟨[νcρ, νdρ]⟩ o σ. Results obtained in the previous section
imply that (c, d) ∈ {(1

2
,−1

2
), (1

2
, xmin)}. Consequently, if b ≥ xmin > −a we

have

L(δ1, δ2, . . . , δk, τ
′) ∈ {L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1

2ρ, ν− 1
2ρ, σ),

L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, νaρ, νa+1ρ, . . . , ν− 1
2ρ, τ)},

if xmin ≤ −a = b we have

L(δ1, δ2, . . . , δk, τ
′) ∈ {L(νaρ, νaρ, . . . , ν− 1

2ρ, ν− 1
2ρ, σ),

L(νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν− 1
2ρ, τ)},
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and if xmin ≤ −a < b we have

L(δ1, δ2, . . . , δk, τ
′) ∈ {L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1

2ρ, ν− 1
2ρ, σ),

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν− 1
2ρ, τ)}.

If xmin > −a, it follows from [12, Proposition 5.12] that both

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)

and
L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, νaρ, . . . , ν− 1

2ρ, τ)

are irreducible subquotients of ⟨∆⟩o σ.
If xmin ≤ −a = b, it follows from [12, Proposition 5.12] that both

L(νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)

and
L(νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν− 1

2ρ, τ)

are irreducible subquotients of ⟨∆⟩ o σ (we note that in situations like this
we omit the part νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ if xmin = a).

If xmin ≤ −a and −a < b, it follows from [12, Proposition 5.12] that both

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)

and

L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν− 1
2ρ, τ)

are irreducible subquotients of ⟨∆⟩o σ.
Let us first consider the case xmin > −a. It can be easily seen, by a

repeated application of the structural formula, that

ν−bρ⊗ ν−b+1ρ⊗ · · · ⊗ νa−1ρ⊗ νaρ× νaρ⊗ · · · ⊗ ν− 1
2ρ× ν− 1

2ρ⊗ σ

appears with multiplicity one in the Jacquet module of ⟨∆⟩oσ with respect
to the appropriate parabolic subgroup. Thus, L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ,

νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ) appears in the composition series of ⟨∆⟩oσ with
multiplicity one. In a similar way we conclude that the multiplicity of

ν−bρ⊗ ν−b+1ρ⊗ · · · ⊗ νxmin−1ρ⊗ νaρ⊗ · · · ⊗ ν− 1
2ρ⊗ τ
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equals the multiplicity of τ in the composition series of ⟨[ν 1
2ρ, νxminρ]⟩ o σ.

Theorem 3.15 implies that L(ν−bρ, ν−b+1ρ, . . . , ν−xmin−1ρ, νaρ, . . . , ν− 1
2ρ, τ)

also appears in the composition series of ⟨∆⟩ o σ with multiplicity one. By
Propositions 4.1 and 4.2, this ends the proof in the considered case.

Now we turn our attention to the case xmin ≤ −a. In the same way as in
the previously considered case we conclude that if b = −a then L(νaρ, νaρ, . . .,

ν− 1
2ρ, ν− 1

2ρ, σ) appears in the composition series of ⟨∆⟩ o σ with multiplic-

ity one, and if −a < b then L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)
appears in the composition series of ⟨∆⟩o σ with multiplicity one.

If−a = b, let π′ = L(νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ, ν−xminρ, . . . , ν− 1
2ρ, τ),

and if −a < b let π′ = L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν−xmin−1ρ, ν−xmin−1ρ,

ν−xminρ, . . . , ν− 1
2ρ, τ).

Let us now prove that π′ also appears in the composition series of ⟨∆⟩oσ
with multiplicity one. If −a = b, we calculate the multiplicity of

νaρ× νaρ⊗ · · · ⊗ ν−xmin−1ρ× ν−xmin−1ρ⊗ L(ν−xminρ, . . . , ν− 1
2ρ, τ)

in the Jacquet module of ⟨∆⟩o σ with respect to the appropriate parabolic
subgroup, and if −a < b we calculate the multiplicity of

ν−bρ⊗· · ·⊗νa−1ρ⊗νaρ×νaρ⊗· · ·⊗ν−xmin−1ρ×ν−xmin−1ρ⊗L(ν−xminρ, . . . , ν− 1
2ρ, τ)

in the Jacquet module of ⟨∆⟩o σ with respect to the appropriate parabolic
subgroup. Using the structural formula, in both cases we obtain that the
desired multiplicity equals the multiplicity of L(ν−xminρ, . . . , ν− 1

2ρ, τ) in the
composition series of the induced representation ⟨[ν−xminρ, νxminρ]⟩o σ.

We have already seen that both L(ν−xminρ, ν−xminρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)

and L(ν−xminρ, . . . , ν− 1
2ρ, τ) are irreducible subquotients of ⟨[ν−xminρ, νxminρ]⟩o

σ. Since both representations ⟨[ν−xminρ, νxminρ]⟩ and σ are unitarizable, both

L(ν−xminρ, ν−xminρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ) and L(ν−xminρ, . . . , ν− 1
2ρ, τ) have to be

subrepresentations of ⟨[ν−xminρ, νxminρ]⟩o σ.
If µ∗(σ) does not contain an irreducible constituent of the form νxρ⊗ π,

for 1
2

≤ x ≤ xmin, directly from the structural formula we obtain that
⟨[ν−xminρ, νxminρ]⟩ ⊗ σ appears in µ∗(⟨[ν−xminρ, νxminρ]⟩o σ) with multiplicity
two. Thus, ⟨[ν−xminρ, νxminρ]⟩ o σ has at most two irreducible subrepresen-

tations and in this case L(ν−xminρ, . . . , ν− 1
2ρ, τ) appears in the composition

series of ⟨[ν−xminρ, νxminρ]⟩o σ with multiplicity one.
If µ∗(σ) contains an irreducible constituent of the form νxρ ⊗ π, from

τ ≤ ⟨[ν 1
2ρ, νxminρ]⟩ o σ and Theorems 3.8 and 3.15, we obtain that µ∗(σ) ≥
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νxminρ⊗ τ ′ and that µ∗(σ) does not contain an irreducible constituent of the
form νyρ⊗ π for y < xmin. Moreover, from [13, Section 8] we conclude that
τ ′ is tempered, νxminρ ⊗ τ ′ is a unique irreducible constituent of the form
νxminρ ⊗ π appearing in µ∗(σ) and it appears there with multiplicity one.
Also, σ is a subrepresentation of νxminρo τ ′ and we have ⟨[ν−xminρ, νxminρ]⟩o
σ ↪→ ⟨[ν−xminρ, νxminρ]⟩ × νxminρ o τ ′. Let us calculate the multiplicity of
⟨[ν−xminρ, νxminρ]⟩ × νxminρ ⊗ τ ′ in µ∗(⟨[ν−xminρ, νxminρ]⟩ o σ). By Theorem
2.1, there are 0 ≤ j ≤ i ≤ 2xmin + 1 and an irreducible constituent δ ⊗ π of
µ∗(σ) such that

⟨[ν−xminρ, νxminρ]⟩×νxminρ ≤ ⟨[ν−xminρ, νxmin−iρ]⟩×⟨[ν−xminρ, νj−xmin−1ρ]⟩× δ.

It follows that either i = 2xmin + 1 or j = 0.
Let us first assume that i = 2xmin+1. If j < i, then δ ∼= ⟨[νj−xminρ, νxminρ]⟩×

νxminρ, which is impossible since µ∗(σ) does not contain an irreducible con-
stituent of the form νj−xminρ ⊗ π′ for j < 2xmin and µ∗(σ) does not contain
an irreducible constituent of the form νxminρ× νxminρ⊗ π′ by the third part
of Lemma 3.1. Consequently, j = i and δ ⊗ π ∼= νxminρ⊗ τ ′.

Let us now assume that j = 0. If i > 0 we get a contradiction in the same
way as in the previously considered case. Thus, i = 0 and δ⊗π ∼= νxminρ⊗τ ′.

Again, it follows that ⟨[ν−xminρ, νxminρ]⟩ o σ has at most two irreducible

subrepresentations and L(ν−xminρ, . . . , ν− 1
2ρ, τ) appears in the composition

series of ⟨[ν−xminρ, νxminρ]⟩o σ with multiplicity one.
By Propositions 4.1 and 4.2, it remains to consider the case xmin ≤ −a

and −a < b. Suppose that L(δ1, δ2, . . . , δk, τ
′) is an irreducible subquotient

of ⟨∆⟩ o σ, δi ∼= δ([νaiρi, ν
biρi]) for i ∈ {1, 2, . . . , k} and there is a j ∈

{1, 2, . . . , k} such that aj < bj. From Proposition 4.1 we have ρi ∼= ρ for all
i, and aj = bj − 1. Let jmin stand for the minimal j such that aj = bj − 1.

Then, by Proposition 4.2, we have ajmin
= bjmin

− 1 = a− 1 and ai = bi =
−b+ i− 1 for i = 1, 2, . . . , jmin − 1. Also, jmin = a+ b.

If ai = bi − 1 for all i = jmin, . . . , k, a repeated application of [12,

Lemma 2.6] shows that τ ′ is an irreducible tempered subquotient of ν
1
2ρoσ,

which contradicts Theorem 3.8 and Proposition 3.13. Thus, there is an
m ∈ {jmin + 1, . . . , k} such that am−1 = bm−1 − 1 and am = bm. From [12,
Lemma 2.6] follows that L(δm−1, δm, . . . , δk, τ

′) is an irreducible subquotient
of ⟨[νam−1+1ρ, ν−am−1ρ]⟩oσ, and that L(δm, δm+1, . . . , δk, τ

′) is an irreducible
subquotient of ⟨[νam−1+2ρ, ν−am−1−1ρ]⟩oσ. Thus, am ∈ {am−1+1, am−1+2}.
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If am = am−1 + 1, we have the following embeddings and isomorphisms:

L(δm−1, . . . , δk, τ
′) ↪→ δ([νam−1ρ, νam−1+1ρ])× νam−1+1ρo L(δm+1, . . . , δk, τ

′)
∼= νam−1+1ρ× δ([νam−1ρ, νam−1+1ρ])o L(δm+1, . . . , δk, τ

′)

↪→ νam−1+1ρ× νam−1+1ρ× νam−1ρo L(δm+1, . . . , δk, τ
′).

Consequently, µ∗(L(δm−1, δm, . . . , δk, τ
′)) contains an irreducible constituent

of the form νam−1+1ρ×νam−1+1ρ⊗π, but µ∗(⟨[νam−1+1ρ, ν−am−1ρ]⟩oσ) does not
contain such an irreducible constituent. We conclude that am = am−1 + 2.
This implies that L(δm+1, δm+2, . . . , δk, τ

′) is an irreducible subquotient of
⟨[νam−1+3ρ, ν−am−1−1ρ]⟩oσ. It follows that am+1 = bm+1, and, using e(δm) ≤
e(δm+1), we deduce that am+1 = am−1 + 3 = am + 1. Repeating the same
arguments, we obtain that aj+1 = aj + 1 for j ∈ {m + 1,m + 2, . . . , k − 1}
and that τ ′ is an irreducible tempered subquotient of ⟨[νcρ, ν−am−1−1ρ]⟩o σ
for c = −ak + 1. Since ak ≤ −1

2
, the results obtained in the previous section

directly imply that c = 1
2
, ak = −1

2
, and −am−1 − 1 = xmin.

Consequently,

L(δ1, δ2, . . . , δk, τ
′) ∼= L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), . . . , (1)

δ([ν−xmin−1ρ, ν−xminρ]), ν−xmin+1ρ, . . . , ν− 1
2ρ, τ).

We have already seen that L(ν−xmin+1ρ, . . . , ν− 1
2ρ, τ) is an irreducible sub-

quotient of ⟨[ν−xmin+1ρ, νxminρ]⟩ o σ. A repeated application of Proposition
4.3 implies that

L(δ([νa−1ρ, νaρ]), . . . , δ([ν−xmin−1ρ, ν−xminρ]), ν−xmin+1ρ, . . . , ν− 1
2ρ, τ)

is an irreducible subquotient of ⟨[νaρ, ν−a+1ρ]⟩oσ. Finally, a repeated appli-
cation of [12, Lemma 2.3] shows that the representation (1) is an irreducible
subquotient of ⟨∆⟩o σ.

It can be easily verified, using the structural formula and results obtained
in the third section, that

ν−bρ⊗ · · · ⊗ νa−2ρ⊗ δ([νa−1ρ, νaρ])⊗ · · · ⊗ δ([ν−xmin−1ρ, ν−xminρ])⊗
⊗ν−xmin+1ρ⊗ · · · ⊗ ν− 1

2ρ⊗ τ

appears with multiplicity one in the Jacquet module of ⟨∆⟩oσ with respect
to the appropriate parabolic subgroup. Consequently, L(ν−bρ, . . . , νa−2ρ,

δ([νa−1ρ, νaρ]), . . . , δ([ν−xmin−1ρ, ν−xminρ]), ν−xmin+1ρ, . . . , ν− 1
2ρ, τ) appears with

multiplicity one in the composition series of ⟨∆⟩ o σ and the theorem is
proved.
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5 Composition series in Jordρ(σ) = ∅ case

In this section we complete our description by considering the remaining case.
Let ∆ = [νaρ, νbρ], where ρ ∈ R(GL) is an irreducible self-contragredient

representation, and a, b are half-integers such that a + b ≥ 0. Let σ ∈ R(G)

stand for a discrete series such that Jordρ(σ) = ∅ and ν
1
2ρo σcusp reduces.

Proposition 5.1. The induced representation ⟨∆⟩oσ contains an irreducible

tempered subquotient if and only if ⟨∆⟩ ∼= ν
1
2ρ.

Proof. Let τ stand for an irreducible tempered subquotient of ⟨∆⟩oσ. If a ≤
−1

2
, then it follows from the cuspidal support of ⟨∆⟩o σ and classifications

of discrete series and tempered representations that there are x < 0 and y
such that x+ y ≥ 0, and an irreducible tempered representation τ ′ such that
τ is a subrepresentation of δ([νxρ, νyρ]) o τ ′. Thus, µ∗(⟨∆⟩ o σ) contains
δ([νxρ, νyρ])⊗ τ ′, which is impossible since y > 0 and µ∗(σ) does not contain
an irreducible constituent of the form νzρ⊗ π′.

It follows that a ≥ 1
2
. If a > 1

2
, it follows from [12, Proposition 3.5] that

⟨∆⟩ o σ is irreducible and that it does not contain an irreducible tempered
subquotient. Consequently, a = 1

2
. From the cuspidal support of ⟨∆⟩ o

σ we deduce that τ is square-integrable, and there is an ordered k-tuple
(σ1, σ2, . . . , σk) of discrete series representations such that τ ∼= σ1, σk is
strongly positive, and for i = 1, 2, . . . , k − 1 there are ai, bi such that ai ≤ 0,
ai + bi > 0, ρi ∈ R(GL), ρi ̸∼= ρ, such that σi is a subrepresentation of
δ([νaiρi, ν

biρi])o σi+1.
By [10, Lemma 3.5], σk is completely determined by its cuspidal support,

and the classification of strongly positive discrete series provided in [9] im-

plies that σk is a unique irreducible subrepresentation of δ([ν
1
2ρ, νbρ])o σsp,

for strongly positive discrete series σsp which does not contain twists of ρ
in the cuspidal support. Standard commuting argument shows that τ is a
subrepresentation of an induced representation of the form δ([ν

1
2ρ, νbρ])o π,

for some irreducible representation π such that µ∗(π) does not contain an
irreducible constituent of the form νzρ ⊗ π′. From the structural formula
follows at once that this is possible only if b = 1

2
.

Conversely, if ⟨∆⟩ ∼= ν
1
2ρ, then the claim follows in the same way as in

the proof of Lemma 3.6.

From Lemma 3.6 and previous proposition we conclude that if ⟨∆⟩ o
σ contains an irreducible tempered subquotient then it contains a unique
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irreducible tempered subquotient, which is a subrepresentation. Using results
obtained in the Section 3 we get the following subrepresentation theorem.

Theorem 5.2. Let x, y denote half-integers such that x + y ≥ 0, let ρ ∈
R(GL) denote an irreducible cuspidal unitarizable representation and let σds ∈
R(G) denote a discrete series representation. If the induced representation
⟨[νxρ, νyρ]⟩o σds has an irreducible tempered subquotient, then it has an ir-
reducible tempered subrepresentation.

The following theorem completes our determination of the composition
series. It can be proved using Proposition 5.1 and the same methods as in
the previous section, detailed verification being left to the reader.

Theorem 5.3. Let us denote by σds a unique discrete series subrepresenta-
tion of ν

1
2ρo σ.

(1) If a ≥ 3
2
, then ⟨∆⟩o σ = L(ν−bρ, . . . , ν−aρ, σ).

(2) If a = 1
2
, in R(G) we have

⟨∆⟩o σ = L(ν−bρ, . . . , ν− 1
2ρ, σ) + L(ν−bρ, . . . , ν− 3

2ρ, σds).

(3) If a ≤ −1
2
and −a = b, in R(G) we have

⟨∆⟩o σ = L(νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)+

+L(νaρ, νaρ, . . . , ν− 3
2ρ, ν− 3

2ρ, ν− 1
2ρ, σds).

(4) If a ≤ −1
2
and −a < b, in R(G) we have

⟨∆⟩o σ = L(ν−bρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 1
2ρ, ν− 1

2ρ, σ)+

+L(ν−bρ, ν−b+1ρ, . . . , νa−1ρ, νaρ, νaρ, . . . , ν− 3
2ρ, ν− 3

2ρ, ν− 1
2ρ, σds)+

+L(ν−bρ, . . . , νa−2ρ, δ([νa−1ρ, νaρ]), . . . , δ([ν− 3
2ρ, ν− 1

2ρ]), σds).
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