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case

Ivan Matié¢

Abstract

Let Gy, denote either the group SO(2n + 1, F') or Sp(2n, F') over
a non-archimedean local field of characteristic different than two. We
study parabolically induced representations of the form (A) x o, where
(A) denotes the Zelevinsky segment representation of the general lin-
ear group attached to the segment A, and o denotes a discrete series
representation of G,,. We determine composition factors of (A) x ¢ in
the case when A = [v%p, v’p] where a is half-integral.

1 Introduction

Let F' denote a non-archimedean local field of characteristic different than
two, and let (G,, denote either symplectic or special odd orthogonal group
defined over F'.

In this paper we continue our investigation, initiated in [12], on the struc-
ture of the induced representations of the form (A) x o, where (A) stands
for a Zelevinsky segment representation of the general linear group attached
to the segment A and o stands for a discrete series representation of G,,.

We determine complete composition series of the induced representations
(A) x o in the case when A = [v%p, v°p] for half-integers a and b. We note
that representations of the form (A) have been introduced in [25] and play a
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fundamental role in the classification of the unitary dual of the general linear
group, provided in [22]. Thus, it is of particular interest to study represen-
tations of G, obtained by unitary parabolic induction from representations
having the Zelevinsky segment on the general linear group part and promi-
nent members of the unitary dual of G,,, n’ < n, such as discrete series or
tempered representations, on the classical group part. Knowledge on the
structure of the composition series of induced representations of such type
should have a deep impact on better understanding of the unitary dual of
classical p-adic groups.

It is rather well-known, and proved in detail in [12, Section 3], that for
A = [V, v’p] such that 2a ¢ Z the induced representation (A) x o is
irreducible. Also, by other irreducibility results obtained in [12], we may
restrict our attention to the case when p is a self-contragredient representa-
tion. Moreover, for a self-contragredient representation p and a half-integer
a we have two main cases to study. To describe them, let us denote by
(Jord(o), ocusp, €-) the admissible triple corresponding to o by the classifica-
tion of discrete series ([14, 16]). The first main case is Jord, (o) # ) and all
elements of Jord, (o) are even integers. The second main case is Jord, (o) = 0)
and v2 P X Oysp reduces. Although the composition series happen to be rather
similar in both cases, it turns out that a description of irreducible tempered
subquotients is much complicated in the first case.

To identify irreducible subquotients of studied induced representations,
we adopt the strategy used in [12], combined with further adjustment of the
methods used in [11] and [17] to the Zelevinsky segment case. The crucial
step in our description is the characterisation of irreducible tempered subquo-
tients of (A) x o in the half-integral case, which is provided in detail in Section
3. The main tool used to accomplish this is the calculation of the Jacquet
modules using the structural formula, but one also has to use several key in-
gredients from classifications of discrete series and tempered representations,
such as the results on the Jacquet modules of tempered representations ([24,
Section 4]) and embeddings of strongly positive representations and discrete
series coming from slightly different approaches used in [8] and [9], which
both also hold in the classical group case. Along the way, we also obtain
a subrepresentation result for irreducible tempered subquotients of (A) X o
(Theorem 5.2).

When having at hand a description of the irreducible tempered subquo-
tients, we are able to identify a general form of non-tempered irreducible



subquotients. Following the subrepresentation version of the Langlands clas-
sification, we obtain very restrictive conditions which lead to rather short
composition series. A complete description of the composition series, to-
gether with the calculation of multiplicities, is then provided using a case-
by-case considerations. Our results show that in the half-integral case the
induced representation (A) x o is a multiplicity one representation, which
can be of length at most three. Also, using our description of the composition
series and irreducibility results from [12], one can directly obtain a class of
unitarizable representations appearing in the ends of complementary series.

Let us now describe the content of the paper in more detail. In the
following section we introduce the notation and present some preliminaries.
The third section presents the technical heart of the paper. It is devoted to
the determination of necessary and sufficient conditions under which (A) x o
contains an irreducible tempered subquotient in the Jord, (o) # 0 case. Based
on the obtained conditions, in the fourth section we obtain a description of the
composition series in Jord, (o) # 0 case. In the fifth section we complete our
description by settling the remaining case when Jord,(o) = () and y%p X Ocysp
reduces.

The author would like to thank Goran Mui¢ for his suggestion to study
this subject.

This work has been supported in part by Croatian Science Foundation
under the project IP-2018-01-3628.

2 Preliminaries

Let F' denote a non-archimedean local field of the characteristic different
from two. We first describe the groups that we consider.

Let J,, = (0int1-j)1<ij<n denote the n x n matrix, where §; ,,4+1_; stands
for the Kronecker symbol. For a square matrix g, we denote by ¢' its trans-
posed matrix, and by ¢” its transposed matrix with respect to the second
diagonal. In what follows, we shall fix one of the series of classical groups

0 —Ju 0 —Ju _
spinF) ={gecrenry () ) ()=o)

SO2n+1,F) = {gEGL(Qn—i—l,F) :gT—g_l}
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and denote by G,, the rank n group belonging to the series which we fixed.
Also, let GL(m, F) denote the general linear group of rank m over F.

The set of standard parabolic subgroups will be fixed in a usual way, i.e.,
we fix a minimal F-parabolic subgroup in the classical group G, consisting
of upper-triangular matrices in the usual matrix realization of the classical
group. Then the Levi factors of standard parabolic subgroups have the form
M = GL(ny, F)x---xGL(ng, F) X G, 1f §; is a representation of GL(n;, F')
and 7 a representation of G, , the normalized parabolically induced repre-
sentation Indfj’ (01 ® -+ ® 6 @ 1) will be denoted by d; x -+ X 0 x 7. We
use a similar notation to denote a parabolically induced representation of
GL(m, F).

By Irr(G,,) we denote the set of all irreducible admissible representations
of G,,. Let R(G,,) denote the Grothendieck group of admissible representa-
tions of finite length of G,, and define R(G) = @,,>0R(G,,). In a similar way
we define Irr(GL(n, F)) and R(GL) = @,>0R(GL(n, F)). We note that in
R(G) wehave 1 X0 =7 X 0 and 1 X My X 0 = Ty X 7y X 0.

For o € Irr(Gy) and 1 < k < n we denote by r)(c) the normalized
Jacquet module of o with respect to the maximal parabolic subgroup Fy)
having the Levi subgroup equal to GL(k, F') x G,,_. We identify r(;)(c) with
its semisimplification in R(GL(k, F')) ® R(G,—x) and consider

po) =100+ rw(o) € R(GL) ® R(G).

Let v stand for a composition of the determinant mapping with the nor-
malized absolute value on F'. Let p € R(GL) denote an irreducible cuspidal
unitarizable representation. By a segment A we mean a set of the form
[p, v p| :=A{p,vp,...,v"p}, where m stands for a non-negative integer. The
induced representation p X vp x - -+ x " p has a unique irreducible subrepre-
sentation ([25]), which is denoted by (A) and called the Zelevinsky segment
representation.

The induced representation v™p x ™ 1p x -+ x p also contains a unique
irreducible subrepresentation, denoted by §(A). Representation §(A) is es-
sentially square-integrable, and, by [25], every irreducible essentially square-
integrable representation in R(GL) can be obtained in this way.

Since in R(G) we have ([1%p, v°p]) xo = {[v~p, v~p]) x o, we may assume
a+b>0.



We frequently use the following structural formulas, obtained in [5, The-
orem 1.4] and in [23]:

Theorem 2.1. Let p € Irr(GL(m, F)) be a cuspidal representation and k,l €
R such that k +1 € Z>. Let o denote an admissible representation of finite
length of Gy,. Write p*(o) = >_, ,,m®c’. Then we have:

k+I+1 4

W F ooy o) = >3 N (v v ) x (v ) xow

=0 j5=0 m,o’
® (7 Fp, v pl) 3o,

pwr(6([v " p, ' p)) Z 225 v V) X 6 p, v p]) X

i=—k—1 j=i w0’

® ([ p,vp]) x o

Let us take a moment to recall the subrepresentation version of the Lang-
lands classification for general linear groups.

For every irreducible essentially square-integrable representation § € R(GL),
there is a unique e(d) € R such that v=*(®§ is unitarizable. We note that
e(§([v%p,%p])) = (a+ b)/2. Suppose that d1,ds, ..., are irreducible essen-
tially square-integrable representations such that e(d;) < e(dy) < ... < e(dy).
Then the induced representation d; X do X - -+ X d; has a unique irreducible
(Langlands) subrepresentation, denoted by L(d1,0s,...,0d;), which appears
with multiplicity one in the composition series of §; X dg X - -+ X §;. Every
irreducible representation m € R(GL) is isomorphic to some L(d1, da, . .., 0k)
and, for a given 7, the representations 01, ds, ..., 0, are unique up to a per-
mutation.

We also use the subrepresentation version of the Langlands classification
for classical groups, since it happens to be more appropriate for our Jacquet
module considerations. We realize a non-tempered irreducible representa-
tion 7 of G, as the unique irreducible (Langlands) subrepresentation of an
induced representation of the form d; x 9y X .-+ X d, X 7, where 7 is an
irreducible tempered representation of some Gy, and d1,0s,...,0; € R(GL)
are irreducible essentially square-integrable representations such that e(d;) <
e(dg) < --- <e(dx) < 0. In this case, we write m = L(61,02,..., 0k, T).

We will use the following result ([6, Lemma 5.5]) several times.
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Lemma 2.2. Suppose that m € R(G,,) is an irreducible representation, A an
wrreducible representation of the Levi subgroup M of G, and © a subrepre-
sentation of [nd]\GJ"()\). If L > M, then there is an irreducible subquotient p
of Ind§,(\) such that 7 is a subrepresentation of IndS™(p).

Now we recall the Mceglin-Tadi¢ classification of discrete series. We note
that this classification now holds unconditionally, due to [1], [15, Théoreme 3.1.1]
and [3, Theorem 7.8]. Every discrete series representation in G,, is uniquely
described by the following three invariants: the partial cuspidal support, the
Jordan block and the e-function.

The partial cuspidal support of a discrete series representation o of G,
is an irreducible cuspidal representation o.,s, of some G,, such that o is a
subrepresentation of m X 0., for some irreducible admissible representation
m € R(GL).

The Jordan block of o, which we denote by Jord(c), is a set of all
pairs (z,p) where p € R(GL) is an irreducible cuspidal unitarizable self-
contragredient representation and x is a positive integer such that the fol-
lowing two conditions are satisfied:

(i) « is even if and only if L(s,p,r) has a pole at s = 0. The local L-
function L(s, p,r) is the one defined by Shahidi (][20], [21]), where 7 is
the exterior square representation of the standard representation on C"»
of GL(n,,C) if G,, is a symplectic group and r is the symmetric-square
representation of the standard representation on C™ of GL(n,,C) if G,
is an odd-orthogonal group.

(ii) The induced representation §([v~@~1/2p, v@=1/2p]) x ¢ is irreducible.

The Jordan triples are triples of the form (Jord, o', €) where
(1) o’ is an irreducible cuspidal representation of some G,,.

(2) Jord is a finite set (possibly empty) of pairs (x,p), where p € R(GL)
is an irreducible self-contragredient cuspidal representation and x is a
positive integer which is even if and only if the local L-function L(s, p,r)
has a pole at s = 0. For such an irreducible representation p we define
Jord, = {z : (z,p) € Jord}. If Jord, # 0 and x € Jord,, let us write
r_ = max{y € Jord, : y < z}, if it exists.



(3) e€is a function defined on a subset of Jord U(Jord x Jord) and attains the
values 1 and -1. If (z,p) € Jord, then €(z, p) is not defined if and only
if 2 is odd and (y, p) € Jord(o’) for some positive integer y. Next, € is
defined on a pair (z, p), (y, p') € Jord if and only if p = p" and = # y.

It follows from the compatibility conditions, which can be found in [8] and
[16], that it is enough to know the value of the e-function on the consecutive
pairs (z_, p), (z,p) and on the minimal element of Jord, (if it is defined on
elements, not only on pairs).

Suppose that, for the Jordan triple (Jord,o’;¢), there is (x,p) € Jord
such that €((z_, p), (z,p)) = 1. If we put Jord" = Jord \{(z_, p), (z,p)} and
consider the restriction € of € to Jord' U(Jord’ x Jord'), we obtain a new
Jordan triple (Jord', o/, ¢’), and we say that such Jordan triple is subordinated
to (Jord, o', €).

We say that the Jordan triple (Jord, o', €) is a triple of alternated type if
€((z_, p), (x,p)) = —1 holds whenever x_is defined and there is an increasing
bijection ¢, : Jord, — Jord),(0’), where Jord),(¢) equals Jord,(o’) U {0} if a
is even and €(min(Jord,), p) = 1 and Jord)(¢”) equals Jord,(o") otherwise.

We say that the Jordan triple (Jord, o’,¢) dominates the Jordan triple
(Jord’, o’ €) if there is a sequence of Jordan triples (Jord;, o’,¢;), 0 < i < k,
such that (Jordg,o’,¢p) = (Jord,o’,¢), (Jordy,o’,e;) = (Jord',o’,€') and
(Jord;, o', €;) is subordinated to (Jord;_1,0’,¢;_1) for i € {1,2,...,k}. The
Jordan triple (Jord, o', €) is called an admissible triple if it dominates a triple
of alternated type.

By [14] and [16], or also [8], there is a one-to-one correspondence between
the set of all discrete series in R(G) and the set of all admissible triples
(Jord, o', €) given by 0 = 0(jord,o’ ), such that oeys, = 0’ and Jord(o) = Jord.

Throughout the paper, the admissible triple corresponding to a discrete
series 0 € R(G) will be denoted by (Jord(o), ousp, €5)-

Triples of the alternated type correspond to so-called strongly positive
representations. We say that o € R(G) is strongly positive if for every em-
bedding o < v py X - - - XV pp X Opysp, Where p1, ..., P, Ocysp are irreducible
cuspidal unitary representations, we have a; > 0 for all i.

Let p € R(GL) denote an irreducible cuspidal unitarizable representation,
and let 0 € R(G) stand for a discrete series. It is proved in [12, Proposi-
tion 3.3| that ([v*p, vYp|) x o is irreducible if 2z & Z.

Let a,b denote half-integers such that b — a > 0. By the irreducibility
criterion provided in [12, Section 3], the induced representation ([v%p, v°p]) x



o is irreducible unless p is self-contragredient and one of the following holds:
(1) Jord,(o) # 0 and Jord,(o) consists of even integers,

(2) Jord,(c) =0 and v2p X Gays, reduces.

3 Tempered subquotients in Jord,(o) # () case

Throughout this section we assume that A = [v%p, v°p], where p € R(GL)
is an irreducible self-contragredient cuspidal unitary representation, a and b
are half-integers such that a +b > 0, and ¢ € R(G) is a discrete series such
that Jord,(o) # 0 and all elements of Jord, (o) are even.

In this section we provide necessary and sufficient conditions under which
the induced representation (A) X o contains an irreducible tempered subquo-
tient.

Lemma 3.1. Let ¢, d denote half-integers such that % <ec<d.

(1) If 2¢—1 ¢ Jord,(o) and x € Jord,(o) for allx € {2¢+1,2c+3,...,2d+
1}, then the Jacquet module of o with respect to the appropriate parabolic
subgroup contains an irreducible representation of the form vepRvtlp®
Vc+2p®"'®ydp®ﬂ'.

(2) If x € Jord,(o) for all x € {2¢+ 1,2¢+ 3,...,2d + 1}, (2c + 1)_ is
defined and e,(((2c¢+1)_, p), (2¢+1, p)) = 1, then the Jacquet module of o
with respect to the appropriate parabolic subgroup contains an irreducible
representation of the form vp @ v Hp@ vt - @ vipT.

(8) If c < d, the Jacquet module of o with respect to the appropriate parabolic
subgroup does not contain an irreducible representation of the form v°p®
vVilp@ - @vilpevip x vip @ m. Also, p*(o) does not contain an
irreducible representation of the form vip x vip @ 7.

Lemma 3.2. Let ¢ denote a non-negative half-integer such that 2c + 1 &
Jord,(c). Then, for a non-negative integer k, the Jacquet module of o with
respect to the appropriate parabolic subgroup does not contain an irreducible
representation of the form v p@ v lp ... @1vp R T.



Proposition 3.3. Suppose that a > % If (A) x o contains a discrete se-
ries subquotient then x € Jord,(o) for all x € {2a —1,2a +1,...,2b — 1},
eo((xp), (x,p)) = —1 forallz € {2a+1,2a+3,...,2b—1} and 2b+ 1 &
Jord,(c). Furthermore, if (A) x o contains a discrete series subquotient then
it contains a unique discrete series subquotient, which is a subrepresentation.

Proof. Suppose that (A) x o contains a discrete series subquotient, and let
us denote such a subquotient by 4. Using cuspidal support considerations,
in a similar way as in [4, Subsection 4.2.1, page 216] we deduce that 2a —1 €
Jord,(c) and 2b + 1 ¢ Jord,(c). Note that Jord(ogs) = Jord(o) U {(2b +
Lp)}\ {(2a —1,p)}. In the rest of the proof we may assume that a < b.
Suppose that {2a+1,2a+3,...,20—1} is not a subset of Jord,(c), and let
us denote by .« the largest element of {2a+1,2a+3,...,2b—1} which does
not appear in Jord,(c). First part of Lemma 3.1 implies that the Jacquet
module of o4, with respect to the appropriate parabolic subgroup contains an

Tmax+1 Tmax+3

irreducible representation of the form v~ "% per "% p®- - -@vp@n. Using
the structural formula and Lemma 3.2, we deduce that the Jacquet module of
(A) x o with respect to the appropriate parabolic subgroup does not contain
an irreducible representation of the form v™% p@ ™5 p® - @vtpe T,
a contradiction.

In the same way, using the second part of Lemma 3.1, we also conclude
that €,,, ((z_, p), (z,p)) = —1forall x € {2a+1,2a+3,...,2b+1}. Applying
[24, Lemma 8.1] several times, we obtain an embedding

Ogs = Vipx v px oo x 1Pp X o,

where ¢’ is a discrete series such that x € Jord,(¢’) for all x € {2a —1,2a +

520 =1}, e (2, p), (z,p)) = =1 forall x € {2a +1,2a+3,...,2b— 1}
and 20+ 1 ¢ Jord,(0’). From Lemma 2.2 follows that there is an irreducible
subquotient 7 of v%p x v2lp x --- x vPp such that o4 < 7 x o’. Since
€. ((xyp), (z,p)) = =1 for all x € {2a + 1,2a + 3,...,2b+ 1}, it follows at
once that m & (A).

Frobenius reciprocity implies that v%p®v** 1 p®- - @1 p®0’ is contained
in the Jacquet module of o4, with respect to the appropriate parabolic sub-
group. Since 2b+1 ¢ Jord, (o), using Lemma 3.2 and Theorem 2.1 we obtain
that the only irreducible representation of the form 1%pRv** p®- - -1 pR 0’
appearing in the Jacquet module of (A) x ¢ with respect to the appropri-
ate parabolic subgroup is %p ® 1" lp ® - -+ ® °p ® o, which appears there
with multiplicity one. Consequently, ¢’ = o, so €,((x_, p), (x,p)) = —1 for all
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x € {2a+1,2a+3,...,2b—1}. Also, oy is a subrepresentation of (A) x o, and
the previous multiplicity one result implies that (A) x o contains a unique
discrete series subquotient. Il

From Proposition 3.3 and [12, Lemma 4.4] we obtain the following crite-
rion.

Theorem 3.4. Suppose that a > 5. Then (A) x o contains a discrete series
subquotient if and only if x € Jord,(o) for allx € {2a—1,2a+1,...,2b—1},
eo((xyp), (x,p)) = =1 forallz € {2a+1,2a+3,...,2b—1} and 2b+ 1 &
Jord,(c). Furthermore, if (A) x o contains a discrete series subquotient then
it contains a unique discrete series subquotient, which is a subrepresentation.

Lemma 3.5. Suppose that o4 € R(G) is a discrete series such that ([v2 p, v°p])
o4s contains a strongly positive discrete series o, for some ¢ > % Then there
is an irreducible representation m € R(G) such that o, is a subrepresentation

ofyép X T

Proof. Since oy, is strongly positive, from the cuspidal support follows that
04s also has to be strongly positive. In the same way as in the proof of
Proposition 3.3 we deduce that x € Jord,(oy4,) for all x € {2,4,...,2¢ — 1}
and 2c + 1 & Jord,(o4s).

By the classification of strongly positive discrete series, given in [9], there
is an ordered k-tuple (oy, 09, ..., 0x) of strongly positive discrete series repre-
sentations such that o1 = o4, there are no twists of p in the cuspidal support
of o, and for v = 1,2, ..., k—1 there are half-integers a;, b;, % < a; < b;, such
that o; is a unique irreducible subrepresentation of §([v% p, v’ p]) x0;41. Also,
fori=1,2,...,k =2 we have a;11 = a; + 1, b1 > b; +1 and v*1p X 0pysp
reduces, where 0., stands for the partial cuspidal support of og,.

Using [16, Proposition 2.1], we deduce that either k = 1 and v°p X 0pyusp
reduces, or £ > 2 and a; = ¢+ 1. Since a strongly positive discrete series
is completely determined by its cuspidal support, it now follows directly
from the classification of strongly positive discrete series that o, is a unique
irreducible subrepresentation of % p X % pX - X V°p X ogs. Now Lemma
2.2 finishes the proof. O]

To deal with the next case, we need the following preparing result.

Lemma 3.6. Suppose that 045 € R(G) is a discrete series representation
and let p € R(GL) denote an irreducible self-contragredient representation.
Suppose that for x € Jord,(o4s) we have x € 2Z. Then the following holds:
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(1) Let ¢ = min(Jord,(oq4s)) and suppose that €,, (c,p) = 1. Then there is a
discrete series oy such that o4, is a subrepresentation of 8([v2p, vz p]) x
1.

(2) Let c denote a positive half-integer such that 2c + 1 < min(Jord,(o4s)).
Then in R(G) we have

1 _c _1
5([V§p7ycp]) A Ods :L(é([V PV 2p]),ad5)+02,
where o is a discrete series subrepresentation of 8([v2p,v°p]) X 04s.

Proof. For the first part of the lemma, it follows from the definition of the e-
function that there is an irreducible representation m; € R(G) such that o4 is
a subrepresentation of § ([V% 0, v p]) x 7. Suppose that 7 is not a square-
integrable representation. Let us first assume that 7 is tempered. Then
there is an x > 0, an irreducible representation p’ € R(GL) and an irreducible
tempered representation 7 € R(G) such that 7 is a subrepresentation of
S([v==p v p]) xr. If p # porp =pand x> St we have

0 = 0([v2p, v T p)x6([v " pl v gl = 5([v " v p)) x0([v2 p, v pl)xT,

contradicting the square-integrability criterion. If p’ & p and z < %, we

have an embedding

c—1

= p]) x o[y p, v p]) @,

Oas = v"p x 8([vip,v

which contradicts the minimality of ¢ by [16, Lemma 3.6].

Let us now assume that 7y is non-tempered. Then there are x, y such that
x+y < 0, an irreducible representation p’ € R(GL) and an irreducible repre-
sentation my € R(G) such that m is a subrepresentation of §([v"p/, v¥p']) X ma.
In the same way as before, we conclude that p’ = p, y = —%, and that oy
has to be contained in the kernel of the intertwining operator

c—1

S([vep, v pl) x 8([vp, v 2pl) xmy = 6([v7p, v 2p)) X 8([V2p, v T p]) X .

Thus, o4 is a subrepresentation of &([1%p, vz p]) x 7, for z < 0. Using [14,

Remarque 3.2] we conclude that there are 2/, 0 < 2’ < %, and a discrete

series o', € R(G) such that oy, is a subrepresentation of d([v= p, v p]) x
o/,s. From [16, Proposition 2.1] now follows that 2z’ + 1 € Jord,(oq4s). Since
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22’ 4+ 1 < ¢, this contradicts the minimality of ¢. Consequently, 7; has to be
square-integrable and the first part of the lemma is proved.

Let us now prove the second part of the lemma. Discrete series oo
is constructed in [19, Section 6]. From [19, Lemma 2.2] we deduce that
) ([V% p, v°p|) X 045 contains a unique irreducible non-tempered subquotient,
L(8([v=<p,v~2p]), 045). Now, following the same arguments as in the proof
of [17, Theorem 2.1] we obtain that every irreducible tempered subquotient
of 6([v2p, v°p]) X 04, is a subrepresentation. But, it is easy to see, using the
structural formula and 2¢ + 1 < min(Jord,(oys)), that 5([v2p, v°p)) @ ogs is
contained in /L*((S([l/%p, v°p|)xo4s) with multiplicity one. Thus, (5([y%p, vep|)x
04s contains a unique irreducible subrepresentation and the lemma is proved.

[

Proposition 3.7. Suppose that a = % If (A) x o contains a discrete series
subquotient then x € Jord,(o) for allz € {2,4,...,20—1}, e,((x_, p), (z,p)) =
—1 for all z € {4,6,...,2b — 1}, 2b+ 1 & Jord,(0), and if b > % then
€5(2,p) = —1. Furthermore, if (A) x o contains a discrete series subquotient
then it contains a unique discrete series subquotient, which s a subrepresen-

tation.

Proof. Let us denote a discrete series subquotient of (A) x o by 04. In the
same way as in the proof of Proposition 3.3 we deduce that = € Jord, (o) for
allz € {2,4,...,20—1}, €5, (2, p), (z,p)) = —1forallz € {4,6,...,2b—1},
and 2b + 1 & Jord, (o). Also, Jord(oys) = Jord(o) U{(2b+ 1,p)}.

If b = 1, from Lemma 3.6 we deduce that €,, (2,p) = 1. Let us now
assume that b > 1.

By the classification obtained in [14] and [16], there is an ordered k-tuple
(01,09, ...,0k) of discrete series representations such that o3 = o4, 0 is
strongly positive, and for every i = 1,2,...,k — 1 there are (a;, p), (b;, p;) €
Jord(o;) such that a; = (b;)- in Jord,, (o;) and

a1 b;—1

o= 0([v" "2 pi,v 2 pi]) X o

Note that if (2,p) € Jord(o;), for some i € {1,2,... k}, then €, (2,p) =

EUi(Qap)'
If £ =1, from Lemma 3.5 follows that ¢,, (2, p) = 1.

Suppose that k > 2. It follows that *((A)xo) > d([v="% p1,v"7 p])®
0y. Thus, there are 0 < j <1 < b+ % and an irreducible constituent T ® o’
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of p*(o) such that

bi—1

= o)) < (v p, v p)) X ([VEp, T2 p)) x

5([y*a1771p1,u
and oy < ([v3tp,i73p]) x o', Since b > L and o is square-integrable,
it follows that j = 0 and i € {b—1,b+ 3} If i = b+ 3, then 7 =

_ai—1 by —1

([v~"z p1,v 2z pi]) and, by [18, Theorem 2.3], ¢’ is a discrete series such
that Jord(o) = Jord(c’) U {(a1, p1), (b1, p1)}. Since oo < (A) x o, it follows
that if p; = p then a; > 2b+ 1.

On the other hand, if i = b — %, then p; = p, a3 =2b+1 = (by)- in

Jord,(o4s) and 7 = (5([V‘b+1p,yblT_1 |). Since in Jord,(c) then we have

(by)- = 2b — 1, again from [18, Theorem 2.3] we conclude that ¢’ is a
discrete series such that Jord(c) = Jord(o’) U {(20 — 1, p), (b1,p)}. Now,
oy < {[v2p, P 1p]) x o

Repeating this procedure, we deduce that either there is ¢ > % and
a discrete series o such that o, < ([v2p,vp]) x o, or there is an i €
{2,3,...,k — 1} and a discrete series ¢” such that o; < 1/%,0 X o’

If oy, < ([v2p, v°p]) % ¢ for some ¢ > 5, from Lemma 3.5 we obtain that

€. (2,p) = 1. If 0; < V%p x o” for some i € {2,3,...,k — 1}, from Lemma
3.6 we get €,,(2,p) = 1. In any case, it follows that ¢,, (2, p) = 1.

Consequently, o4 is a subrepresentation of u%p X o, where Jord(ogs) =
Jord(o/,,) U{(2,p)}. In the same way as in the proof of Proposition 3.3 we
obtain that o4, is a subrepresentation of (A) x o', for a discrete series o’ such
that € Jord,(¢’) for all x € {2,4,...,2b— 1}, e ((z_, p), (z,p)) = —1 for
all x € {4,6,...,2b— 1} and 2b+ 1 ¢ Jord, (o).

If €,,(2,p) = 1, then ¢’ is a subrepresentation of V3 p x o” for some
irreducible representation ¢”. Since (A) x Ve p is irreducible, we obtain an
embedding o4, < v2p X v2p x ([v2p,Pp]) x ¢”. Thus, p*(4s) contains an
irreducible constituent of the form 2 p X Vs p ® m. Consequently, u*(u% p X
o) > Vi p X V3 p ® 7, and using transitivity of Jacquet modules we easily
deduce that this contradicts [13, Lemma 8.2]. Thus, €,/(2,p) = —1.

The rest of the proof now follows on the lines of the proof of Proposition
3.3. O

From Proposition 3.7 and [12, Lemma 5.10] we obtain the following cri-
terion.
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Theorem 3.8. Suppose that a = % Then (A) x o contains a discrete se-
ries subquotient if and only if x € Jord,(o) for all x € {2,4,...,2b — 1},
e((x_, p), (x,p)) = —1 for allx € {4,6,...,2b—1}, 2b+1 & Jord,(0), and if
b> 1 then €,(2,p) = —1. Furthermore, if (A) X o contains a discrete series
subquotient then it contains a unique discrete series subquotient, which is a
subrepresentation.

The following result completes the criteria for discrete series subquotients.

Theorem 3.9. Suppose that a < 0. Then (A)xo does not contain a discrete
series subquotient.

Proof. Suppose, on the contrary, that there is a discrete series subquotient
045 of (A) x 0. From the cuspidal support of (A) x o follows that o4 is not
a strongly positive representation. Also, —a < b and, using cuspidal support
considerations in a similar way as in [4, Subsection 4.1.1], we conclude that
—2a+1,2b+1 ¢ Jord, (o). In the same way as in the proof of Proposition 3.3
we obtain that « € Jord, (o) for all x € {2,4,..., —2a—1}U{-2a+3, —2a+
5,...,2b—1}. Note that Jord(ogs) = Jord(o) U {(—2a+ 1, p),(2b+ 1,p)}.

Now we proceed in the same way as in the proof of Proposition 3.7 and
take an ordered k-tuple (01,09, ..., 0x) of discrete series representations such
that o1 = 045, 0} is strongly positive, and for every ¢ = 1,2,...,k — 1 there
are (a;, p), (b;, p;) € Jord(o;) such that a; = (b;)- in Jord,,(o;) and

a;—1

g; — (5([V7 2 pZ,VblT_lIOz]) X Oiq1-

Note that if (2,p) € Jord(o;), for some i € {1,2,...,k}, then &, (2,p) =
€s,(2,p), for all j € {1,2,...,7}. Obviously, & > 2.

Since p*((A) x o) > 5([V‘u1771p1,1/171771p1]) ® 09, there are 0 < j < <
b—a+ 1 and an irreducible constituent 7 ® ¢’ of u*(o) such that

3" prv T pal) < o)) X (W T ]y x

and oy < ([ p, v 1)) x o’. Using cuspidal support considerations,
we obtain that if —b < —i — a, then {[v~°p,v~""%p]) has to be an essen-
tially square-integrable representation, and a similar argument applies for
([v*p,vite=1p]). Tt directly follows that i € {b —a,b—a+1} and j € {0,1}.

Ifi = b—a+1 and j = 0, in the same way as in the proof of Proposition 3.7
we conclude that oo < (A) X ¢, for a discrete series o’ such that Jord(o) =
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Jord(o’) U {(a1, p1), (b1, p1)}. Similarly, if i = b — a and 7 = 0, we conclude
that oy < ([1%p, V"7 1p]) x 0’, where o’ is a discrete series such that Jord(c) =
Jord(o") U {(2b — 1, p), (b1, p)}. Note that this possibility does not appear
when —a =0 — 1.

Let us now consider the case (i,j) = (b —a + 1,1). Then we have 7 =
§([v*tp, yh%p]). If —a = b — 1, this is impossible because then we have
ol — b, but 20+ 1 ¢ Jord,(0). If —a < b—1, it follows that 21 < b.

If a < —3, in Jord,(o) we have (b1)- = —2a + 1. This leads to oy <
([vt1p, vPp]) x o', where o’ is a discrete series such that Jord(o) = Jord(o’)U
{(—=2a — 1, p), (b1, p)}. But this is impossible since then b, ¢ Jord,(¢’) and
ol < b, so ([v*Hp, vbp]) x o does not contain a discrete series subquotient.

If a = —%, since in Jord,(o4s) we have (by)- = —2a + 1, it follows that
by = min(Jord,(¢)) and €,(2, p) = 1, by [24, Proposition 7.4]. From Lemma
3.6 we get that ¢’ is a discrete series such that Jord(c) = Jord(¢")U{ (b1, p)}.
Now we have oy < ([v2p, vbp]) x o', which is impossible since (2, p), (b1, p) &
Jord(o").

Thus, if j = 1, then ¢ = b — a and the square-integrability of ¢ implies
that —a=b—-1. If a < —%, in the same way as before we conclude that o, <
([v**1p, P~ 1p]) x o', for a discrete series o’ such that Jord(c) = Jord(o”) U
{(=2a—1,p), (b1,p)}. If a = —3, then oy < vip x o', for a discrete series o’
such that Jord(o) = Jord(c’) U {(b1,p)}, and b; = min(Jord,(o)).

Repeating the same arguments, we conclude that if o; < {[°p, v9p]) x o”,
for some [ € {1,2,...,k — 1}, for 0 < —c < d and a discrete series o', then
there is an ordered pair (i,7) € {(0,0), (1,0),(1,1)} and a discrete series o”
such that oy, < ([v“Hp,v?p]) x o”. Furthermore, if (i,5) = (1,1), then
—c=d-1.

Since oy is strongly positive, it is not a subquotient of an induced rep-
resentation of the form ([v°p, v%p]) x o', for 0 < —c < d and ¢’ a discrete
series. Thus, there is an m € {1,2,...,k — 1} and discrete series representa-
tions o', 0" such that o, < (V" 2p,v2p]) x ¢’ and oy < v2p x ¢”. From
Lemma 3.6 follows that ¢, ., (2,p) = 1 and, consequently, €, (2,p) = 1, so
w1 (o,,) contains an irreducible constituent of the form Ve p ® m. But, since
([v=2p,v2p])x0’ contains a discrete series subquotient, we have 2 & J ord,(o”)
and it follows from the structural formula that w*({[v=2p,v2p]) x o’) does
not contain v2 p ® m, a contradiction. O

To determine irreducible tempered subquotients, we need the following

15



result, which is [2, Théoreme 0.1] or [7, Lemma 1.3.3].

Lemma 3.10. Let a,b denote positive half-integers such that a < b, and let
p € R(GL) denote an irreducible cuspidal unitarizable representation. Then
the induced representation 6([v="p,v°p]) x ([v*p,v*"1p]) is irreducible and
isomorphic to {[v2p,v*~1p]) x 8([v="p, vPp]).

Proposition 3.11. Suppose that a > % If (A) x o contains an irreducible
tempered subquotient which is not square-integrable then x € Jord,(o) for
all x € {2a — 1,2a + 1,...,2b + 1}, e,((z, p), (x,p)) = =1 for all x €
{2a+1,2a+3,...,2b—1} and €,((2b—1,p), (2b+ 1, p)) = 1. Furthermore,
if (A) X o contains an irreducible tempered subquotient then it contains a
unique irreducible tempered subquotient, which is a subrepresentation.

Proof. Let us denote an irreducible tempered subquotient of (A) x ¢ by 7.
Applying the structure formula as in the proof of [12, Lemma 4.1], it directly
follows that 2b+ 1 € Jord,(c). Also, 7 is a subrepresentation of an induced
representation of the form §([v=p,1%p]) % o1, where o, is a discrete series
such that Jord(o) = Jord(al) U {(2a —1,p), (264 1,p)}.

Since p*({(A) x o) > §([v=p,v%p]) ® oy, from Theorem 2.1 we obtain
that u*(o) > 5([I/’b+1p VPp]) ® o5. Now [24, Proposition 7.2] implies 2b —
1 € Jord,(0) and €,((2b — 1,p),(2b + 1,p)) = 1. Also, from [18, Theo-
rem 2.3] follows that o9 is a discrete series representation such that o is
a subrepresentation of §([v=""1p,vbp]) x 0o, and oy is an irreducible sub-
quotient of ([1%p,¥*~1p]) x 0. Proposition 3.3 implies that z € Jord,(o9)
for all x € {2a — 1,2a + 1,...,20 — 3} and €,,((x_, p), (z,p)) = —1 for all
x € {2a+1,2a+3,...,2b—3}. From [16, Proposition 2.1, Lemma 5.1] or [8,
Proposition 3.1, Theorem 3.15], we conclude that also € Jord,(o) for all
r€{2a—1,2a+1,...,2b—3} and ¢, ((x_, p), (z,p)) = —1 for all x € {2a +
1,2a+3,...,2b—3}. It remains to show that €,((2b—3, p), (2b—1,p)) = —1,
and in the rest of the proof we can assume that a < b.

Note that p*(7) does not contain an irreducible constituent of the form
Voo x vhp @ .

From Lemma 3.10 and Theorem 3.4 we obtain an embedding

7 ([, " p]) x 6([v ", v0p]) X 0.

By Lemma 2.2, there is an irreducible subquotient 7" of §([v=p,%p]) x o
such that 7 is a subrepresentation of ([%p, "~ 1p]) x 7/
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Since 2b+ 1 € Jord,(o2), in R(G) we have 0([v="p,1%p]) X 00 = 71 + 71,
for mutually non-isomorphic irreducible tempered representations 7, and 7_;.

Since 2b — 3 € Jord,(02), by [24, Lemma 4.1] there is a unique ¢ €
{1,—1} such that 7; can be written as a subrepresentation of an induced
representation of the form &([v°~1p, vbp]) x §([°~Lp, Pp]) x 7, for irreducible
. If 7/ 2 7;, we have the following embeddings and isomorphisms:

T = ([, " pl) x 0([V" o, v0p]) x O([v" T p, 10 p])

(o, " 72p]) x v P < o([V"p, Vb/)]) a([v" 1P,V P])
2o, " 72pl) x 8([V" o, v%p]) X 8([V" 7 o, 0p]) X VTN p
([vp, " 2p]) x vPp x vPp x P p x P p x P p o

Vo x vPp x ([Vp, " 2p)) x P p x P p x P p

R

{

R oL

which is impossible. Thus, 7" = 7_;.
Since v~ %p x 0y is irreducible by [19, Theorem 6.1], we have

7 0([v ™", ) x v X 0y
= 5([v™"p,v’p]) x v0p X oy
>~ 1P x 6([v™"p, 1 p]) X 0.

It follows from Lemma 2.2 that there is an irreducible subquotient o3 of
§([v="p,vbp]) x oy such that 7/ is a subrepresentation of v°p x a3. Also,
since p*(7') contains an irreducible constituent of the form v°p x 1°p @ 7, we
get that pu*(o3) > °p @ 7', for some irreducible 7/. From [17, Theorem 2.1]
we easily obtain that o3 has to be a discrete series subrepresentation of
S([v="p,vbp]) x 0y, In R(G) we have §([v="p, 27 1p]) x 09 = 7{ + 7', for
mutually non-isomorphic irreducible tempered representations 7, and 7',
and there is a unique j € {1,—1} such that o3 is a subrepresentation of
VPp x T

Using [24, Lemma 4.1] again, we see that there is a unique k € {1,—1}
such that 7], can be written as a subrepresentation of an induced representa-
tion of the form v*~1p x 1*~1p x 7, for some irreducible 7 € R(G).

If j =k, from 7/ < vPpx1Ppx P px b pxm and 20—1 ¢ Jord,(o2) we
get 7 — §(["1p, vbp]) x §([1P~1p, Pp]) x 7, a contradiction. Thus, j = —k.

Let us prove that €,,((20 — 3, p), (2b— 1, p)) = —1 (we note that this also
follows from the proof of [8, Theorem 3.15], but we include a proof here,
for the sake of completeness). Suppose that €,,((20 — 3,p), (2b — 1,p)) = 1.
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Then p*(03) contains §([v=72p, 1"~ p])®ay, for some discrete series o4. Since
o3 < v’p x 7], using the structural formula and 2b—1,2b+1 & Jord, (o), we
obtain that o, < v’p x 7/, for an irreducible representation n’ € R(G) such
that p* (7)) > 6([v=""2p, "' p]) @ 7. Obviously, 7’ < v*~'p x 0y. Using [24,
Theorem 8.2], we deduce that the Jacquet module of o, with respect to the
appropriate parabolic subgroup contains 1°p @ 1*"1p ® 0.

It is now easy to see that the Jacquet module of 7! with respect to the ap-
propriate parabolic subgroup contains §([v="2p, "~ 1p]) @1 " p®0oy. Transi-
tivity of the Jacquet modules implies that there is an irreducible constituent
T ® o9 of ,U,*(T]/-) such that the Jacquet module of m; with respect to the
appropriate parabolic subgroup contains &([v=""2p, "7 1p]) @ v*~1p. Since
2b —1,2b+ 1 ¢ Jord,(o2), we deduce that 7 = 6([v="2p, "7 p]) x VP~ 1p,
and it can now be directly seen that 7/ can be written as a subrepresenta-
tion of an induced representation of the form v*~!p x v*~!p x 7, for some
irreducible 7 € R(G), a contradiction.

From 7 < ([v%p,1*71p]) x vbp x 03, Lemma 2.2 and the fact that p*(7)
does not contain an irreducible constituent of the form v°px1°p@m, we obtain
7 < ([v*p, V¥p]) x 3. Consequently, the Jacquet module of 7 with respect to
the appropriate parabolic subgroup contains v%p@v* T p®---@1°p x ybp@rj’-.

Since 7 is an irreducible subquotient of (A) x o, using the structural
formula and the third part of Lemma 3.1 we deduce that ;*(v°p x o) contains
Vpx P p@7). Thus, yi*(0) contains 1°p@7] and it follows from [24, Section 7]
that o is a unique irreducible subrepresentation of 1°p 7;. Thus, 0 = o3.
Consequently, €,((20 — 3,p),(2b — 1,p)) = —1 and 7 is a subrepresentation
of ([vp,1p]) x 0.

Since p*(0) contains §([v=""p,1Pp]) ® o with multiplicity one and oy is
the unique discrete series subquotient of ([1%p, 171 p]) x a9, §([v™0p, VP p]) @0y
appears with multiplicity one in p*((A) x ), so 7 is the unique irreducible
tempered subquotient of (A) x o. O

From Proposition 3.11 and [12, Lemma 4.6] we obtain

Theorem 3.12. Suppose that a > 5. Then (A) x o contains an irreducible
tempered subquotient which is not square-integrable if and only if x € Jord,(o)
for all x € {2a — 1,2a + 1,...,20+ 1}, ,((x_, p), (x,p)) = —1 for all x €
{2a +1,2a+3,...,20 — 1} and €,((2b—1,p), (20 + 1,p)) = 1. Furthermore,
if (A) X o contains an irreducible tempered subquotient then it contains a
unique 1rreducible tempered subquotient, which is a subrepresentation.
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In the same way as in the proof of Lemma 3.6, we obtain the following
result.

Proposition 3.13. Suppose thata = b= 5. Then (A)xo = VipXxo contains

an irreducible tempered subquotient which is not square-integrable if and only
1
if (2,p) € Jord(o) and €,(2,p) = 1. In that case, in R(G) we have vzp X
o= L(y‘%p, o) + 7, where T is an irreducible tempered subrepresentation of
1
vip X o.

Proposition 3.14. Suppose that a = 1 and a < b. If (A) x o contains
an trreducible tempered subquotient which is not square-integrable then x €
Jord,(o) for all x € {2,4,...,2b+ 1}, €,((z_, p), (x,p)) = —1 for all x €
{4,6,...,2b— 1}, e,((20 — 1,p), (20 + 1,p)) = 1 and €,(2, p) = —1. Further-
more, if (A) X o contains an irreducible tempered subquotient then it contains
a unique irreducible tempered subquotient, which is a subrepresentation.

Proof. We will comment only the case b = %, since the case b > % can be

handled in the same way as in the proof of Proposition 3.11, using Theorem
3.8.

Suppose that b = % and let us denote by 7 an irreducible tempered but
not square-integrable subquotient of (A) x o. Then 7 is a subrepresentation
of 8([v2p,v2p]) % oy, for a discrete series ;. Using Frobenius reciprocity
and the structural formula we obtain that ;*(0) > §([v~2p, v2 p]) @ 0y, Where
oy is a discrete series such that Jord(c) = Jord(o2) U {(2,p), (4,p)} and oy
is a subquotient of Ve p X 0y.

It follows that 7 is a subrepresentation of v2p x §([v~2p, v2p]) X 02, and
there is an irreducible subquotient 71 of §([v~2p, v3p]) x o such that 7 is a
subrepresentation of v2p x 7. Since p* (1) does not contain an irreducible
constituent of the form V%p X ygp@ 7, using [24, Lemma 4.4] we deduce that
71 is a unique irreducible tempered subrepresentation of 5([1/_% P, % pl) ~
5 which does not contain 6([v2p, v2p]) x 8([v2p,v2p]) ® o5 in the Jacquet
module with respect to the appropriate parabolic subgroup.

Since (2,p) ¢ Jord(os), it follows in the same way as in the proof of
Proposition 3.11 that 77 is a subrepresentation of Vs p X o3, for some dis-
crete series subrepresentation o3 of ([v"2p, v2p]) % 5. From the classifica-
tion of discrete series follows that o3 is a subrepresentation of v2 p X Ty, for
an irreducible tempered subrepresentation 7 of §([v~2p, v2p]) % 0o, Using

i (r1) 2 0([vzp, v2p]) x0([v2 p, V2 p]) @02 we get that u* (1) # V3 px V3 pR0s.
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Let us prove that €,,(2, p) = —1 (we note that this also follows from the
proof of [8, Lemma 4.9], but we include a proof here, for the sake of complete-
ness). Suppose that €,,(2, p) = 1. Then there is an irreducible representation
m € R(G) such that p*(o3) > % p®@m. The square-integrability criterion im-
plies that 7 is a discrete series. Using (2,p) € Jord(cs) again, we deduce
that 7 < V2 p x 7' for an irreducible subquotient 7’ of % p X 09 such that
1 (72) > vzp@7’. It follows from [13, Lemma 8.3] that p*(7) > v2p@7” for
some discrete series 7”. Since (4, p) € Jord(oq) we obtain that 7’ = 7" i.e.,
7’ is also a discrete series representation. By the second part of Lemma 3.6,
7’ is a subrepresentation of V3 p X 09. Thus, the Jacquet module of 75 with
respect to an appropriate parabolic subgroup contains V%p@) V%p@) 0o. Tran-
sitivity of Jacquet modules implies that there is an irreducible constituent
m ® o9 of p*(72) such that the Jacquet module of 7 with respect to the
appropriate parabolic subgroup contains Vi PR Vi p. Since 7, is a subrepre-
sentatlon of 5([1/_%p, vap|) ¥ oy and (2, p) & Jord(os), it directly follows that
m = V2p X 1/2,0, a contradlctlon

Since 7 < v2 p X 1/2p X 03, in the same way as in the proof of Proposition
3.11 we deduce 7 — (A) x 03 and 0 = g3, so the proposition is proved. [J

From Proposition 3.14 and [12, Lemma 5.11] we obtain

Theorem 3.15. Suppose that a = 5 and a < b. Then (A) x o contains an

irreducible tempered subquotient which is not square-integrable if and only if
x € Jordy(o) for all v € {2,4,...,20+ 1}, e,((z_, p), (x,p)) = —1 for all
x € {4,6,...,2b — 1}, ,((20 — 1,p), (20 + 1,p)) = 1 and €,(2,p) = —1.
Furthermore, if (A) x o contains an irreducible tempered subquotient then it
contains a unique irreducible tempered subquotient, which is a subrepresen-
tation.

Proposition 3.16. If a < 0, then (A) x o does not contain an irreducible
tempered subquotient.

Proof. Suppose, on the contrary, that there is an irreducible tempered sub-
quotient 7 of (A) x o. By Theorem 3.9, 7 is not a discrete series representa-
tion. Two possibilities will be studied separately.

Let us first assume that 7 is a subrepresentation of an induced repre-
sentation of the form 0([v="p1,vp1]) X 0([v Y pa, VYps]) X o', for a discrete
series o’. From the cuspidal support of (A) x o we deduce that p; = py = p,
{z,y} = {—a,b}, v # y, and —2a + 1,20+ 1 € Jord,(0). Then there is
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an irreducible tempered subrepresentation 7/ of 6([v=°p, v%p]) x ¢’ such that
w () = o([vep,v%)]) ® 7'. From p*({(A) x o) we deduce that p*(o) >
S([v*p,v]) ® o1, for a discrete series oy such that —2a + 1 & Jord,(o1)
and ([v?*1p,vbp]) x oy > 7. From Theorems 3.9 and 3.15 we get that
([v**1p,vbp]) x oy does not contain an irreducible tempered subquotient, a
contradiction.

Inspecting the cuspidal support of (A) x o we obtain that the only other
possibility is that 7 is a subrepresentation of an induced representation of
the form d([v="p,v"p]) x o', where x € {—a,b} and ¢’ is a discrete series.
Also, 2z + 1 € Jord,(0), and if —a < b then 2y + 1 ¢ Jord,(o) for y such

that {x,y} = {—a,b}.

fr=—-a<bx=b>—-a+lorx=b=—a> %, we get a contradiction
in the same way as in the previously considered case.
. . . 1 1
Ifx = b= —a = 3, it follows that 7 is a subrepresentation of §([v "2 p, 12 p]) %

o', for a discrete series o’ which is a subquotient of % p X o1, where oy is a
discrete series such that P (o) > Ve p ® oyp. From Lemma 3.6 we obtain an
embedding 7 < v2p X v2p X v 5,0 X o1, which is 1mp0881ble since p*(7) does
not contain an irreducible constituent of the form vz p X Ve pR.

It remains to consider the case © = b = —a + 1. First, assume that
—a > . Since —2a + 1 & Jord,(0), using the structural formula we deduce
that p*(o) > §([v=""2p, %)) ® o1, in Jord,(o) we have (2b+1). = —2a —
1 and oy is a discrete series representation. Since o/ < {([1*Tp, vP71p]) x
op and a + 1 < 0, we get a contradiction with Theorem 3.9. Let us now

assume that —a = 1. Then min(Jord,(0)) = 4 and €,(4,p) = 1. Also, we

easily see that o’ is a subquotient of Ve p X o1, for a discrete series o; such
1 3

that o is a subrepresentation of 6([v"2p,v2p|) x 0;. By Lemma 3.6, ¢’ is a

subrepresentation of I/%p x o1 and we have

T 6([v i, vip)) x vipx oL 2 vipx (v 2p,v2p]) o,

. . . . 1 .
so p*(7) contains an irreducible constituent of the form v2p ® m. But, since
2 ¢ Jord, (o), 1 ({[v=2p, v p]) x o) does not contain v2 p@, a contradiction.
This ends the proof. n

4 Composition series in Jord, (o) # () case

In this section we again assume that A = [v%p, %p], where p € R(GL) is an
irreducible self-contragredient representation, a and b are half-integers such
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that a+b > 0, and 0 € R(G) is a discrete series such that Jord,(c) # () and
all elements of Jord,(o) are even integers.

We determine complete composition series of the induced representation
(A) x 0. To obtain candidates for non-tempered irreducible subquotients,
we need the following two results.

Proposition 4.1. Suppose that L(d1,09,...,0k,7T) is an irreducible non-
tempered subquotient of (A)xo, and let §; =2 §([v% p;, V¥ipy]) fori=1,2,... k.
Then for all 1 =1,2,...,k we have p; = p and b; — a; € {0,1}.

Proof. Suppose, on the contrary, that there is some j € {1,2,...,k} such
that b; — a; > 2. Let us denote the minimal such j by jmin. Using [12,
Lemma 2.6] we deduce that there are ¢ and d, a < ¢ < %, —1 < d < b, such

20 72
that L(8;,,., 0j,ut1s - - - Ok, T) is an irreducible subquotient of ([1°p, v%p]) x 0.
Since L(6j, ..+ Ojuint1s - - - » Ok, T) is a subrepresentation of 6, , X L(6;, .. +1,- -, 0k, T),
it follows that p*({[v°p, v%p]) x o) contains §; . & L(d; . +1,-- -0k, T).

Using the structural formula, we deduce that there are 0 < 7 < @ <
d — c+ 1 and an irreducible constituent m ® o’ of p*(o) such that

ct+j—1

O([1 %050 0y V0 i ]) < ™ p, v p]) X ([, v p]) x

and L(0j,+1,- -+ 0k, 7) < ([ p, vt 1p]) xo’. Since o is square-integrable
and b . —aj,. > 2, it follows that p;,, = p, c=—-d+1< -1 i=d-c
and j = 1. Thus, a; , = —d, b, =d—1,and 7 = §([v~2p, 191 p]). Note
that this implies (2d — 1, p) € Jord(o).
There are two possibilities to consider. Let us first assume that d >
. Then we have —d 4+ 2 < 0 and, by the classification of discrete series
nd [18, Theorem 2.3], ¢’ is a discrete series such that (2d — 1,p), (2d —
3,p) & Jord(o’). By Theorem 3.9 and Proposition 3.16, jui, < k and, since
(2d — 3,p) & Jord(o’), we have 0, . 1 € {v°p,v°p, 6([v°p, vt p])}. From
e(d,..) = —3 and €(8;,,.) < e(8j,,.+1), we obtain that the only possibility
3 and 4,11 = v=2p. This implies Ojnin X g1 =05, 041 X O
so p*(L(8;, 6, 11,...,06,7)) > v 2p@n, for some irreducible 7', But, it
can be seen at once that u*(([v=2p,v3p]) x o) does not contain v~ 2p® 7, a
contradiction.
It remains to consider the case d = 2. Then €,(2,p) = 1 and o’ is
a discrete series such that (2,p) ¢ Jord(o’). Also, L(d; 41,0k T) <
1 , : : : 1 /
v2p x o', and in the appropriate Grothendieck group we have vzp x ¢’ =

o+ L zp,o). If L(6j . t1,---+0k,7) = 0, from o — vip x o we get that

5
2
a

iIsc=—
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L(6j t1s---,0k,7)isa Subrepresentatlon of vipxvipxd([v 2p, v 2p])x0,
which is impossible since p*({[v~ 2,0,1/2p]> o) does not contain an irre-
ducible constituent of the form Ve p X Vi p ® 7. On the other hand, if
L(6j, 4150k, 7) = L(v™ 2p,0'), a similar commutativity argument shows
that L((S]mmﬂ, ..., 0k, T)isa subrepresentatlon of v~ 2p>< Vipx 1/ 2pXVT3pX
o’. But, it can be easily seen that v~ 2,0® V2p® v 2p® v 2p® o’ is not
contained in the Jacquet module of ([v=2p,v2p]) x o with respect to the
appropriate parabolic subgroup, a contradiction.

Consequently, b; — a; € {0,1} for all i = 1,2,...,k and [12, Lemma 2.6]
implies that p; = p for all i. O

Proposition 4.2. Suppose that L(1,09,...,0,,7) is an irreducible non-
tempered subquotient of (A)xa, and let 6; = 6([vp, V% p]) fori=1,2,... k.
Suppose that there is a j € {1,2,...,k} such thatbj—a; =1, and letl = a+b.
Then the following holds:

(1) a <0 and —a < b,
(2) ay=b,—1=a—1 and for i <l we have a; =b; = —b+1i — 1,

(3) there is a positive half-integer , © < —a, such that ([V2p,v7p]) x o
contains an irreducible tempered subquotient,

(4) if forjy € {j+1,7+2,...,k} we have by —aj =1, then b; —a; =1 for
alie{j+1,j+2,...,5 —1}.

Proof. Let us denote by jmin the minimal j such that b; — a; = 1. It follows
directly from [12, Lemma 2.6] that a < 0. Suppose that —a = b. Using [12,
Lemma 2.6] again, we obtain that jumin > 2, L(0j,,,—1,0jm,-- -+ 0k, T) IS an
irreducible subquotient of ([v=“p, v°p]) X o, for some ¢ such that % <c<b,
and L(0;_ . ,0;.. 11, -, 0k, 7) is an irreducible subquotient of ([¥=“" p, v°p])
0.

It follows that 6, 1 = v~°pand §; . = §([v~°p, v "'p]). Now a simple
commutativity argument, together with the Frobenius reciprocity, implies
that p*(L(6; Givins 50k, 7)) = v M p @ 7, for some irreducible 7. Tt
follows from the structural formula and the square-integrability criterion that
w({[v=p,v°p]) x o) does not contain an irreducible constituent of the form

v~Tlp @ 7, a contradiction. Thus, —a < b.

min—1>
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If for all 7 € {Jmin, jmin + 1, ..., k} we have b; — a; = 1, then a repeated
application of [12, Lemma 2.6] shows that 7 is an irreducible subquotient of
VipX o,

Suppose that there is an ¢ € {jmm + 1,...,k} such that b, — a; = 0,
and let us denote the minimal such i by 4,;,. Again, then there is some c,
3 < ¢ < b, such that L(&;,,, 1,0, ---,0k 7) is an irreducible subquotient
of {[v="p,vep]) x o, 6 .1 = §([v=p,v=Tp|) and L(&; . ,...,0,T) is
an irreducible subquotient of ([v=¢"2p, 17 1p|) x 0. Note that we also have
c < —a+ 1. It follows that b, , € {—-c+2,—c+1}. If b, = —c+
1, a simple commutativity argument and Frobenius reciprocity imply that
W(L(0, 1,045+ 50k, 7)) = v T p x v p @ 7w which is impossible
since p*(([v=tp,v°p|) x o) does not contain an irreducible constituent of
the form v~ p x vt p@m. Thus, b; . = —c+2and L(; . 11,--.,0k,T)
is an irreducible subquotient of ([v=“"p, v 1p]) x o. Since for i < j we
have e(d;) < e(d;), a repeated application of [12, Lemma 2.6] shows that
for i € {imin,immn + 1,...,k} we have a; = b; and that 7 is an irreducible
subquotient of ([v2p, v°1p]) x 0.

If b > —a + 1, then we have a; = b; and a; € {-b,a}. If a1 = q,
then L(dy,03,...,0,7) is an irreducible subquotient of ([1*"1p,1%p]) x o,
and using e(d1) < e(dy) we deduce that ay = by = a + 1. Repeating the same
arguments, we obtain that a; = b; for all ¢ = 1,2,...,k, a contradiction.
Thus, if b > —a + 1 we have a; = by = —b.

Proceeding in the same way, we get that a; = b; = —b+ i — 1 for
i=1,2,...,0 =1, and L(d;,641,...,0,7) is an irreducible subquotient of
([v%p, v~ 1p]) x . Suppose that | < jpim. Then a; = b and a; € {a,a — 1}.
If a; = a, in the same way as before we conclude that a; = b; for all
i=1,2,...,k, a contradiction. If ¢; = a — 1, it follows that L(d;y1,...,dk,T)
is an irreducible subquotient of ([v%p,v~%p|) x o, where | + 1 < ju,, and
we have already seen that this is impossible. Consequently, | = j,.;, and
a; = by — 1 = a — 1. This finishes the proof. O

The following proposition will be useful when proving that an irreducible
representation of certain type is a subquotient of (A) x o.

Proposition 4.3. Let ¢ denote a positive half-integer, and suppose that ¢ >

%. Suppose that L(01,09, . .., 0k, T) is an irreducible subquotient of ([v=c"1p, vep]) x
04s, for some discrete series o5, and 6; = §([v%p, v ")), a; € {—c+ i —
1,—c+i}, fori =1,2,.... k. Then L(5([v="'p,v=p|),01,...,0,T) is an
irreducible subquotient of {([v=°p, v pl) X o4s.
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Proof. Since L(§([v=<"p,v=p]),d1, ..., 0, T) is a subrepresentation of v~¢px
v lpx L(dy,...,0, 7), from Lemma 2.2 follows that there is an irreducible
subquotient 7 of v=¢"'px L(dy, ..., 0k, T) such that L(6([v="p,v¢p]), b1, - . -,
dk, T) is a subrepresentation of v~¢p x 7.

The Jacquet module of L(§([v=¢"1p,v<p|),d1,...,0,7) with respect to
the appropriate parabolic subgroup contains v p@v=1p@ L(d1,..., 0, T).
Since 7 is tempered and &; = §([v% p, v="p]), it follows directly from The-
orem 2.1 that p*(7) does not contain an irreducible constituent of the form
v=p@7’. Thus, we obtain that u*(m) contains v=¢"'p&L(dy, ..., 0, 7). Since
L(v=¢"1p, 6y, ..., 0k, T) is a subrepresentation of v=*"1px L(dy,. .., 0, 7) and
it can be easily seen that p*(v=<"'p x L(dy,...,0,7)) contains v~ “"!p ®
L(dy, ..., 0, 7) with multiplicity one, it follows that 7 = L(v=<"'p, dy,. .., 0, 7).

Also, 7 < v tp x ([ p, %)) X 045. In R(G) we have

vl x ([ p, o)) Mo = (v p, o)) x v p X o

= ([ p, v p]) M oust
+ L=, v, 8([Vp, v p])) X ogs.

From p*(m) > v=<"'p® L(d1,..., 0, 7), we conclude that 7 is a subquotient
of ([v=<p, v pl) X o4s.

Consequently, L(6([v=<"tp,vp]), 81, ..., 0, T) is a subquotient of v~¢p x
([v=p, vt ply X045 and, since p* (L(6([v="tp,v¢p]), 01, ..., 0k, T)) = v p&
7 in the same way as before we deduce that L(5([v="1p,v=p]), 01, ..., 0k, T)
is a subquotient of ([v=¢p, v°Tp]) X 04 O

We are now ready to provide a description of the composition series, using
a case-by-case consideration.

Theorem 4.4. Suppose that a > % Let us denote by x; the minimal
positive even integer such that x1 > 2a + 1 and x1 ¢ Jord,(o). Also,
let us denote by xy the minimal x € Jord,(o) such that © > 2a + 1 and
e (22, p), (x,p)) = 1, if such x exists. Otherwise, let x5 = x1 + 1. Let Tyin
denote min{’”lT*l, %4}, and let T denote the unique irreducible tempered sub-
quotient of ([V%p, v™™inpl) X o.

(1) If 2a — 1 & Jord,(o) or2a — 1 € Jord,(o) and xmym > b, then we have

(AYxo=Lvp, v ... v, 0).
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(2) If 2a — 1 € Jord,(0) and Twin < b, then in R(G) we have

(AYyxo = L(v=p,v ™" p, ... v %, 0)+L(v bp, v p, . y Fmin=l)y 1),

Proof. First part of the theorem follows from [12, Theorem 4.8].

For the second part, from the proof of [12, Proposition 4.7] follows that
both L(v=p, v p, ... ,v7%,0) and L(v=tp,v =" p, ... v~ %=1y 7) are
subquotients of (A) x o. Let us prove that there are no other irreducible
subquotients.

By Theorems 3.4 and 3.12, any other irreducible subquotient has to be
non-tempered. Let L(dy,0s,...,d,7) denote a non-tempered irreducible
subquotient of (A) x o, and &; = §([v%p;, vbip;]) for i = 1,2,..., k. From
Proposition 4.1 we get a; = b; for all i. Now [12, Lemma 2.6] implies that 7’
is a subquotient of ([1%p, v°p]) x o for some ¢ < b and §; = v=F"1p for i =
1,2,...,b—c. Theorems 3.4 and 3.12 imply ¢ € {a—1, zn;, }. Thus, every ir-
reducible subquotient of (A)x ¢ is isomorphic either to L(v=p, v~ tp, ... v, o)
or to L(v=bp,v=0tp ... pomn=ly 1)

It is easy to see that both v p@v T p®- - -@r~%p®0c and v p@r ! p®
- -@uTmmin =l h@ 7 appear with multiplicity one in the Jacquet module of (A) %
o with respect to the appropriate parabolic subgroup. Consequently, both
L(v=p, v p .. v, 0) and L(v=p,v=0Tp, ... y=2min=lp 7} appear in
the composition series of (A) x o with multiplicity one and the theorem is
proved. O

The following theorem can be proved following the lines of the proof of
the previous one, so we skip the proof.

Theorem 4.5. Suppose that a = %

(1) If 2 & Jord,(o) or €,(2,p) =1, in R(G) we have
(AY x o =L p,vp, ... ,y’%p, o)+ L(v=p,v " p, ... ,V’%p, 7),
where T is the unique irreducible tempered subquotient of V%,O X 0.

(2) If €,(2,p) = —1, let us denote by x1 the minimal positive even integer
such that x1 & Jord,(o), and by x5 the minimal x € Jord,(o) such that
eo((x-,p), (x,p)) = 1, if such x exists. Otherwise, let vo = x; + 1.

Let xpi denote min{xlT*l, x2;1}, and let T denote the unique irreducible

tempered subquotient of ([V%p, yrminpl) X 0.
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(i) If Tmin > b, we have (A) x o0 = L(vp, v p, .. v 2p, o).
(11) If Tpmin < b, then in R(G) we have
(AY xo=Lvpvp .., v, o)+
+ L(v=p, v p, . o=l 1),
Let us now complete our description in the Jord,(o) # 0 case.
Theorem 4.6. Suppose that a < 0.
(1) Suppose that 2 ¢ Jord,(c) or €,(2,p) = 1. Let 7 denote the unique
wrreducible tempered subquotient of I/%p xo. If —a=0b, in R(G) we have
(A) xo =L, %,..., 1/_%,0, V_%p, o)+
+ L(vp, v, ..., v
If —a < b, in R(G) we have

(AY xo=L(v ", ... .05 p, %, 1%, ..., V_ép, V_%p, o)+
3
2

F L, VT, 1V, TR v R, U B, T)

-
+ Lw™p,...,v" 2p, 6([v* ' p,vp]), . .. ,5([V—%p, V_%,O]), T).

(2) If €,(2,p) = —1, let us denote by x1 the minimal positive even integer

such that x1 & Jord,(o), and by x5 the minimal x € Jord,(o) such that

eo((x-,p), (x,p)) = 1, if such x exists. Otherwise, let vo = x; + 1.
Let xin denote min{"“T*l, ’”2771} and let T denote the unique irreducible

tempered subquotient of <[V%p, viminpl) X 0. If Ty > b, we have

(AY x o= L p, v p .. v p, v, 1%, ... ,V_%p, V_%p, o).

If xin < b and x> —a, in R(G) we have
(AY xo =L p, v p, ... v p, %, 1%, ..., I/_%p, I/_%p, o)+
+L(v = p, v p, Ty V_%p, T).
If xin < b and —a = b, in R(G) we have
(A) xo=Lv'p,v%,..., I/_%p, I/_%p, o)+
+L(Vp, V%, ... v min Ty Tmin =l g Emin e g 7)),
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If Tyin < —a and —a < b, in R(G) we have

(AYxo=Lv ..., 0" p, v, 1%, ..., V_%p, I/_%p, o)+
+L(w o, v, T v, VO, T p e,
T Pming u*%p, T)+

+L(w ™, ..., v 2, 6([V* p, vp)), . .., ([ min T p, T Tmin ]

—ZTmin+1 -

1
v Py V2P T).

Proof. We will comment only the second part of the theorem, since the first
one can be proved in the same way but more easily. By Proposition 3.16,
there are no irreducible tempered subquotients of (A) x o.

If zpin > b, the claim follows from [12, Theorem 5.13].

Now we assume that z.;, < b. By Proposition 3.16 there are no irre-
ducible tempered subquotients. Suppose that L(d1,d,...,0k, 7') is an irre-
ducible non-tempered subquotient of (A) x ¢ such that §; = v%p;, a; < 0,
forall i =1,2,..., k. By [12, Lemma 2.6], p; = p for all i = 1,2,... k and
there are ¢ and d such that a < ¢ < %, ¢ —1<d <bsuch that

L(51,52,...,6k,7',) =

—-b d—1 —a —a+1 c—1 /
Lw™’p,...,v" " p,v v Py VT,

if a > —d, or

L1, 8, .., 0, 7")
Lw™p,...,v* p, v, v, ... v v T p v vy T ),
if a < —d (here we omit the part v=%p,..., 0% 1p if —a = b), and 7' is

subquotient of {[v°p,v%p]) x 0. Results obtained in the previous section
imply that (c,d) € {(3,—3), (3; Zmin)}. Consequently, if b > @, > —a we
have

L(61,00,...,61,7) € {Lw lp, v p, ... v p, v, %, . .. ,y_%p, y_%p, o),
Lv=p, v p, pmomin=ly pap potly l/_%p, )},
if Zin < —a = b we have
L(01,02,...,06,7) € {L(Wp, v, ..., 1/_%,0, I/_%p, o),

a a —Zmin—1 —ZTmin—1 —Tmi -1
L(vp,vp, ... py fmin=tp p=Pmin =0y 1y =Fmingg - pT2p 7))
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and if 2, < —a < b we have

1 1

L(6y,09,...,01,7) € {L(vbp, ..., p, v, %, ..., v 2p, v 2p, ),

Lw™p,...,v* p, v, v, ... v minlp = min =l " Tmin V’%p, T)}.
If zpmin > —a, it follows from [12, Proposition 5.12] that both
L™ p,...,v* p,vp, 0 p, ... . v 2p, v 2p, 0)

and .
Lw™p, v p, . .y mmin=ly 10 v, T)
are irreducible subquotients of (A) x o.
If 2 < —a = b, it follows from [12, Proposition 5.12] that both
L(vp, %, ..., l/_%p, l/_%p, o)
and .
L(vp, V%, ... v omin=ly = @min =l ) =min g 72 g 7

are irreducible subquotients of (A) x ¢ (we note that in situations like this
we omit the part v%p, V%, ... v omin=ly p=Tmin=ly if o = a).
If 2in < —a and —a < b, it follows from [12, Proposition 5.12] that both

—b a—1 a a -1 -1
L(v™"p,..., v p,vp, Vo, ...,V 2p, v 2p,0)
and
L(V_bp7 et Ija_lp’ VaP’ Vap’ tt V_xmin_lp7 Ij_xmin_lp’ V_xrninp7 ct V_§p7 7_)

are irreducible subquotients of (A) x o.
Let us first consider the case x,;, > —a. It can be easily seen, by a
repeated application of the structural formula, that

—b —b+1 a—1 a a -1 -1
vV opRU PR RV PRIV PXV PR QU 20XV 2pQ0

appears with multiplicity one in the Jacquet module of (A) x o with respect
to the appropriate parabolic subgroup. Thus, L(v=p,v=""1p, ... 1% 1p,
vep, vp, ..., y*%p, y*%p, o) appears in the composition series of (A) x o with
multiplicity one. In a similar way we conclude that the multiplicity of

I/_bp®l/_b+1p®...®Vﬂfmin—lp®yap®_“®y_%p®7_
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equals the multiplicity of 7 in the composition series of ([1/% p, Vminpl) X 0.
Theorem 3.15 implies that L(v=lp,v=0*p, ... v =2min=lp vap  v72p 1)
also appears in the composition series of (A) x ¢ with multiplicity one. By
Propositions 4.1 and 4.2, this ends the proof in the considered case.

Now we turn our attention to the case xn;;, < —a. In the same way as in
the previously considered case we conclude that if b = —a then L(v%p, v%p, ..

o=

ve 0, v2 p, o) appears in the composition series of (A) x ¢ with multiplic-
ity one, and if —a < b then L(v=tp,..., 0% p, %, 1%, ..., V_%p, V_%p, o)
appears in the composition series of (A) x o with multiplicity one.

If —a=b,let 7’ = L(v%, V%, ... v "min=ly p=@min=ly ) =Tmin - V_%,O, T),
and if —a < blet 7' = L(v="p,..., v p,vop, 1%, ... v %min=lp p=Tmin=ly
py " Iming V*%p, 7).

Let us now prove that 7’ also appears in the composition series of (A) X o
with multiplicity one. If —a = b, we calculate the multiplicity of

Vip X VIp® - @u TminTly s T Imin=ly @ [(yTFming V_%p, T)

in the Jacquet module of (A) x o with respect to the appropriate parabolic
subgroup, and if —a < b we calculate the multiplicity of

1

v 0@ -@ut T p@r px v p- - - @u T imin Tl gy T min Tl @ (T ming V_%p, )

in the Jacquet module of (A) x o with respect to the appropriate parabolic
subgroup. Using the structural formula, in both cases we obtain that the
desired multiplicity equals the multiplicity of L(v=*minp ... vz p,T) in the
composition series of the induced representation ([v~*minp, p™minpl) X o.

We have already seen that both L(y~%minp y*:”mi“p,...,l/*%p, u*%p, o)
and L(v~"=inp, ... v~3p, 7) are irreducible subquotients of ([p~min p, pmin p])
0. Since both representations ([v~*minp p¥minp|) and ¢ are unitarizable, both
L(y=ominp p~Fming V_%p, V_%p, o) and L(y~minp ... u_%p, 7) have to be
subrepresentations of ([y~*minp, p*minpl) X g.

If u*(o) does not contain an irreducible constituent of the form v*p ® ,
for % < x < Ty, directly from the structural formula we obtain that
([p=Fminp, py¥minp|) @ o appears in p*(([p~"minp, v*min p]) X ) with multiplicity
two. Thus, ([p~*minp, v*minp]) x ¢ has at most two irreducible subrepresen-
tations and in this case L(y~"minp, .. .| u’%p, T) appears in the composition
series of ([v~*minp, vminp|) x o with multiplicity one.

If u*(o) contains an irreducible constituent of the form v*p @ 7, from

7 < ([v2p, v p]) x o and Theorems 3.8 and 3.15, we obtain that u*(o) >
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v¥minp @ 7' and that p* (o) does not contain an irreducible constituent of the
form Yp @ 7 for y < Tyim. Moreover, from [13, Section 8] we conclude that
7' is tempered, v™inp ® 7’ is a unique irreducible constituent of the form
v¥minp @ 7 appearing in p*(o) and it appears there with multiplicity one.
Also, o is a subrepresentation of v*=irp x 7/ and we have ([y~%min p p*min g} X
o < ([pPminp pPminpl) x pTming 5 7/ Let us calculate the multiplicity of
([pFminp, p¥minp|) x pPminp @ 7/ in p*(([v=Fminp, v*minpl) 1 o). By Theorem
2.1, there are 0 < j <1 < 2z, + 1 and an irreducible constituent 6 ® 7 of
(1 (o) such that

(0 g gy 7 < ([, ) (o 5o g]) 5,
It follows that either i = 2z, + 1 or j = 0.

Let us first assume that i = 2z, +1. If j < 4, then § &2 ([p?~%min p, p¥min p]) x
v¥min o which is impossible since p*(o) does not contain an irreducible con-
stituent of the form v/ ~%minp @ 7/ for j < 2z, and p*(o) does not contain
an irreducible constituent of the form v®minp x pmin p @ 7’ by the third part
of Lemma 3.1. Consequently, j =i and § ® w = v™minp @ 7/,

Let us now assume that 7 = 0. If i > 0 we get a contradiction in the same
way as in the previously considered case. Thus, i =0 and 0 @7 = v™™inpR 7.

Again, it follows that ([p~*minp, py*minp|) X ¢ has at most two irreducible
subrepresentations and L(y~%minp ... v3 p,T) appears in the composition
series of ([p~*minp pPminpl) x o with multiplicity one.

By Propositions 4.1 and 4.2, it remains to consider the case z,;, < —a
and —a < b. Suppose that L(d1,0s,...,0,7") is an irreducible subquotient
of (A) x o, & = 6([v%p;,vbip]) for i € {1,2,...,k} and there is a j €
{1,2,...,k} such that a; < b;. From Proposition 4.1 we have p; = p for all
i, and a; = b; — 1. Let jmin stand for the minimal j such that a; = b; — 1.

Then, by Proposition 4.2, we have a;,, =0b;,. —1=a—1and a; =b, =
—b+i—1fori=1,2,..., Jmin — 1. AlSO, jiin = a +b.

If a; = b; — 1 for all i = juyin,...,k, a repeated application of [12,
Lemma 2.6] shows that 7/ is an irreducible tempered subquotient of y%p X0,
which contradicts Theorem 3.8 and Proposition 3.13. Thus, there is an
m € {jmin + 1,...,k} such that a,, 1 = b,,_; — 1 and a,, = b,,. From [12,
Lemma 2.6] follows that L(d,,—1,0m, - -.,0k,7') is an irreducible subquotient
of ([pm=1T1p y=am=1pl) x o, and that L(d,, dpmyt,- - -, 0k, 7') is an irreducible
subquotient of ([pm-172p, y=4m=1=1p]) ¢ 5. Thus, @ € {@m-1+1, am_1+2}.
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If a,, = a,,_1 + 1, we have the following embeddings and isomorphisms:

Lty .-y 00, 7)) = 6([v* 1 p, v pl) x v g 5 L6ty - o, O, T')
> pom—ttl g 5 §([* =t p, v T pl) ) LGy, s Oky )
ey =1ty s pim=1t s I g 4 LSty o5 Oy T,

Consequently, p*(L(dpm—1,0m,--.,0k, 7')) contains an irreducible constituent

of the form v@m=1+1 px pom=1t1 s but p* (([v*=—1T1p, v=9m=1p]) x0) does not
contain such an irreducible constituent. We conclude that a,, = a,,—1 + 2.
This implies that L(dy41,0mi2,---,0k, 7') is an irreducible subquotient of
([vrm=1F3p yam=1=1pl) ¢ . Tt follows that a,,41 = b1, and, using e(d,,) <
e(0ma1), we deduce that a1 = a1 + 3 = a,, + 1. Repeating the same
arguments, we obtain that a;;1 =a;+1for j € {m+1,m+2,....k—1}
and that 7’ is an irreducible tempered subquotient of {[v°p, v==1"1p]) x1 o

for c = —ay, + 1. Since a; < —%, the results obtained in the previous section
directly imply that ¢ = %, ap = —%, and —a,;,—1 — 1 = Tyin-
Consequently,
L(61,09,...,61,7) = Lv™"p,...,v" 2p,6([v* p,v%)), ..., (1)
(5([V7xmil)7lp’ I/fxminp])7 fomin“l’lp’ cee V*%p’ 7—)
We have already seen that L(y—*mintlp V_%p, 7) is an irreducible sub-

quotient of ([p~*mintly pominpl) x o. A repeated application of Proposition
4.3 implies that

a— a —Zmin— —Zmin —Zmin -1
L(6([v* tp,vp)), ..., 6(lv Yo v o)), v v 2p,T)

is an irreducible subquotient of {[v%p, v~ 1p|) x 0. Finally, a repeated appli-
cation of [12, Lemma 2.3] shows that the representation (1) is an irreducible
subquotient of (A) x o.

It can be easily verified, using the structural formula and results obtained
in the third section, that

l/fbp ® .. ® l/afzp ® 5([I/a71p’ I/ap]> ® .. ® 6([y7xmin71p’ I/*xminp])®
®y_xmiﬂ+1p R R ]/_%p RXT

appears with multiplicity one in the Jacquet module of (A) x o with respect
to the appropriate parabolic subgroup. Consequently, L(v~%p,...,v* 2p,

S([v*p,vp]), ..., 6([pFmin=lp p=@min p]) = Tmintly o ,V_%p, T) appears with
multiplicity one in the composition series of (A) x o and the theorem is

proved. O
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5 Composition series in Jord,(c) = () case

In this section we complete our description by considering the remaining case.
Let A = [1%p,%p], where p € R(GL) is an irreducible self-contragredient

representation, and a, b are half-integers such that a + b > 0. Let 0 € R(G)

stand for a discrete series such that Jord,(o) = 0 and z/%p X Oeysp Teduces.

Proposition 5.1. The induced representation (A) xo contains an irreducible
tempered subquotient if and only if (A) = z/%p.

Proof. Let 7 stand for an irreducible tempered subquotient of (A) xo. If a <
—%, then it follows from the cuspidal support of (A) x ¢ and classifications
of discrete series and tempered representations that there are x < 0 and y
such that z +y > 0, and an irreducible tempered representation 7’ such that
7 is a subrepresentation of d([v"p,v¥p]) x 7. Thus, p*((A) x o) contains
d([v"p,vYp]) @ 7', which is impossible since y > 0 and p*(o) does not contain
an irreducible constituent of the form v*p ® =’

It follows that a > % If a > %, it follows from [12, Proposition 3.5] that
(A) x o is irreducible and that it does not contain an irreducible tempered
subquotient. Consequently, a = % From the cuspidal support of (A) x
o we deduce that 7 is square-integrable, and there is an ordered k-tuple
(01,09,...,0k) of discrete series representations such that 7 = oy, oy is
strongly positive, and for i = 1,2,...,k — 1 there are a;, b; such that a; <0,
a; +b; > 0, p; € R(GL), p; % p, such that o; is a subrepresentation of
([ ps, V% pi]) X g

By [10, Lemma 3.5], oy is completely determined by its cuspidal support,
and the classification of strongly positive discrete series provided in [9] im-
plies that o is a unique irreducible subrepresentation of § ([V%p, Vop]) X ogp,
for strongly positive discrete series g, which does not contain twists of p
in the cuspidal support. Standard commuting argument shows that 7 is a
subrepresentation of an induced representation of the form &([v2p, v2p]) x T,
for some irreducible representation 7 such that p*(7) does not contain an
irreducible constituent of the form v?p ® 7’. From the structural formula
follows at once that this is possible only if b = %

Conversely, if (A) = v3p, then the claim follows in the same way as in
the proof of Lemma 3.6. n

From Lemma 3.6 and previous proposition we conclude that if (A) x
o contains an irreducible tempered subquotient then it contains a unique

33



irreducible tempered subquotient, which is a subrepresentation. Using results
obtained in the Section 3 we get the following subrepresentation theorem.

Theorem 5.2. Let x,y denote half-integers such that v + 1y > 0, let p €
R(GL) denote an irreducible cuspidal unitarizable representation and let 045 €
R(G) denote a discrete series representation. If the induced representation
([V*p, vp]) X g4s has an irreducible tempered subquotient, then it has an ir-
reducible tempered subrepresentation.

The following theorem completes our determination of the composition
series. It can be proved using Proposition 5.1 and the same methods as in
the previous section, detailed verification being left to the reader.

Theorem 5.3. Let us denote by 04s a unique discrete series subrepresenta-
1
tion of v2p X o.

(1) Ifa>3, then (AYy x o= L(v"p,...,v"%,0).
(2) If a =3, in R(G) we have

3

(D) wo=Lw™p,... v ipo)+ L "p,... v ip,0u).
(8) Ifa < —5 and —a =b, in R(G) we have
(A) xo= L, 1,..., V_%p, V_%p, o)+

3 1

+L(Vap7 Vapu R V_%p7 vozIp,vo2p, O-ds)‘
(4) If a < —3 and —a < b, in R(G) we have

(AYxo=Lv " ..., p, v, %,..., V’%p, u’%p, o)+
3 3

+L( ™, v L T U, v, TR, TR p TR p )+
— a— a— a -3 -1
+Lwp, v 2 0 o, v ), ([ T2 p, v 2 ), 0s).
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